ترغب بنشر مسار تعليمي؟ اضغط هنا

Human Action Recognition Based on Multi-scale Feature Maps from Depth Video Sequences

85   0   0.0 ( 0 )
 نشر من قبل Qian Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human action recognition is an active research area in computer vision. Although great process has been made, previous methods mostly recognize actions based on depth data at only one scale, and thus they often neglect multi-scale features that provide additional information action recognition in practical application scenarios. In this paper, we present a novel framework focusing on multi-scale motion information to recognize human actions from depth video sequences. We propose a multi-scale feature map called Laplacian pyramid depth motion images(LP-DMI). We employ depth motion images (DMI) as the templates to generate the multi-scale static representation of actions. Then, we caculate LP-DMI to enhance multi-scale dynamic information of motions and reduces redundant static information in human bodies. We further extract the multi-granularity descriptor called LP-DMI-HOG to provide more discriminative features. Finally, we utilize extreme learning machine (ELM) for action classification. The proposed method yeilds the recognition accuracy of 93.41%, 85.12%, 91.94% on public MSRAction3D dataset, UTD-MHAD and DHA dataset. Through extensive experiments, we prove that our method outperforms state-of-the-art benchmarks.



قيم البحث

اقرأ أيضاً

We investigate the problem of representing an entire video using CNN features for human action recognition. Currently, limited by GPU memory, we have not been able to feed a whole video into CNN/RNNs for end-to-end learning. A common practice is to u se sampled frames as inputs and video labels as supervision. One major problem of this popular approach is that the local samples may not contain the information indicated by global labels. To deal with this problem, we propose to treat the deep networks trained on local inputs as local feature extractors. After extracting local features, we aggregate them into global features and train another mapping function on the same training data to map the global features into global labels. We study a set of problems regarding this new type of local features such as how to aggregate them into global features. Experimental results on HMDB51 and UCF101 datasets show that, for these new local features, a simple maximum pooling on the sparsely sampled features lead to significant performance improvement.
Learning actions from human demonstration video is promising for intelligent robotic systems. Extracting the exact section and re-observing the extracted video section in detail is important for imitating complex skills because human motions give val uable hints for robots. However, the general video understanding methods focus more on the understanding of the full frame,lacking consideration on extracting accurate sections and aligning them with the humans intent. We propose a Learning-from-Observation framework that splits and understands a video of a human demonstration with verbal instructions to extract accurate action sequences. The splitting is done based on local minimum points of the hand velocity, which align human daily-life actions with object-centered face contact transitions required for generating robot motion. Then, we extract a motion description on the split videos using video captioning techniques that are trained from our new daily-life action video dataset. Finally, we match the motion descriptions with the verbal instructions to understand the correct human intent and ignore the unintended actions inside the video. We evaluate the validity of hand velocity-based video splitting and demonstrate that it is effective. The experimental results on our new video captioning dataset focusing on daily-life human actions demonstrate the effectiveness of the proposed method. The source code, trained models, and the dataset will be made available.
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model. More attention is paid to employing GCN in Skeleton-Based action recognition. But existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame. To obtain spatiotemporal features simultaneously, we design a generic representation of skeleton sequences for action recognition and propose a novel model called Temporal Graph Networks (TGN). Secondly, the adjacency matrix of the graph describing the relation of joints is mostly dependent on the physical connection between joints. To appropriately describe the relations between joints in the skeleton graph, we propose a multi-scale graph strategy, adopting a full-scale graph, part-scale graph, and core-scale graph to capture the local features of each joint and the contour features of important joints. Experiments were carried out on two large datasets and results show that TGN with our graph strategy outperforms state-of-the-art methods.
Training deep learning based video classifiers for action recognition requires a large amount of labeled videos. The labeling process is labor-intensive and time-consuming. On the other hand, large amount of weakly-labeled images are uploaded to the Internet by users everyday. To harness the rich and highly diverse set of Web images, a scalable approach is to crawl these images to train deep learning based classifier, such as Convolutional Neural Networks (CNN). However, due to the domain shift problem, the performance of Web images trained deep classifiers tend to degrade when directly deployed to videos. One way to address this problem is to fine-tune the trained models on videos, but sufficient amount of annotated videos are still required. In this work, we propose a novel approach to transfer knowledge from image domain to video domain. The proposed method can adapt to the target domain (i.e. video data) with limited amount of training data. Our method maps the video frames into a low-dimensional feature space using the class-discriminative spatial attention map for CNNs. We design a novel Siamese EnergyNet structure to learn energy functions on the attention maps by jointly optimizing two loss functions, such that the attention map corresponding to a ground truth concept would have higher energy. We conduct extensive experiments on two challenging video recognition datasets (i.e. TVHI and UCF101), and demonstrate the efficacy of our proposed method.
Getting the distance to objects is crucial for autonomous vehicles. In instances where depth sensors cannot be used, this distance has to be estimated from RGB cameras. As opposed to cars, the task of estimating depth from on-board mounted cameras is made complex on drones because of the lack of constrains on motion during flights. In this paper, we present a method to estimate the distance of objects seen by an on-board mounted camera by using its RGB video stream and drone motion information. Our method is built upon a pyramidal convolutional neural network architecture and uses time recurrence in pair with geometric constraints imposed by motion to produce pixel-wise depth maps. In our architecture, each level of the pyramid is designed to produce its own depth estimate based on past observations and information provided by the previous level in the pyramid. We introduce a spatial reprojection layer to maintain the spatio-temporal consistency of the data between the levels. We analyse the performance of our approach on Mid-Air, a public drone dataset featuring synthetic drone trajectories recorded in a wide variety of unstructured outdoor environments. Our experiments show that our network outperforms state-of-the-art depth estimation methods and that the use of motion information is the main contributing factor for this improvement. The code of our method is publicly available on GitHub; see https://github.com/michael-fonder/M4Depth

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا