ﻻ يوجد ملخص باللغة العربية
Advances in integrated photonics open exciting opportunities for batch-fabricated optical sensors using high quality factor nanophotonic cavities to achieve ultra-high sensitivities and bandwidths. The sensitivity improves with higher optical power, however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic-force-microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, reaching a sensitivity of $approx$ 0.4 fm/Hz$^{1/2}$, an improvement of $approx 10times$ relative to the best performance in the linear regime. Counterintuitively, we discover that higher transduction gain and sensitivity are obtained with lower quality factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing small-signal dynamic response of a broad range of technologically important photonic sensors subject to the thermo-optical effect.
Nanophotonic entangled-photon sources are a critical building block of chip-scale quantum photonic architecture and have seen significant development over the past two decades. These sources generate photon pairs that typically span over a narrow fre
Optical limiters are nonlinear devices that feature decreasing transmittance with increasing incident optical intensity, and thus can protect sensitive components from high-intensity illumination. The ideal optical limiter reflects rather than absorb
Low-loss nanophotonic resonators have been widely used in fundamental science and applications thanks to their ability to concentrate optical energy. Key for resonator engineering, the total intrinsic loss is easily determined by spectroscopy, howeve
Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior perfor
Nonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense non