ترغب بنشر مسار تعليمي؟ اضغط هنا

Byzantine Generals in the Permissionless Setting

58   0   0.0 ( 0 )
 نشر من قبل Andrew Lewis-Pye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Consensus protocols have traditionally been studied in a setting where all participants are known to each other from the start of the protocol execution. In the parlance of the blockchain literature, this is referred to as the permissioned setting. What differentiates Bitcoin from these previously studied protocols is that it operates in a permissionless setting, i.e. it is a protocol for establishing consensus over an unknown network of participants that anybody can join, with as many identities as they like in any role. The arrival of this new form of protocol brings with it many questions. Beyond Bitcoin, what can we prove about permissionless protocols in a general sense? How does recent work on permissionless protocols in the blockchain literature relate to the well-developed history of research on permissioned protocols in distributed computing? To answer these questions, we describe a formal framework for the analysis of both permissioned and permissionless systems. Our framework allows for apples-to-apples comparisons between different categories of protocols and, in turn, the development of theory to formally discuss their relative merits. A major benefit of the framework is that it facilitates the application of a rich history of proofs and techniques in distributed computing to problems in blockchain and the study of permissionless systems. Within our framework, we then address the questions above. We consider the Byzantine Generals Problem as a formalisation of the problem of reaching consensus, and address a programme of research that asks, Under what adversarial conditions, and for what types of permissionless protocol, is consensus possible? We prove a number of results for this programme, our main result being that deterministic consensus is not possible for decentralised permissionless protocols. To close, we give a list of eight open questions.



قيم البحث

اقرأ أيضاً

In this paper we will present the Multidimensional Byzantine Agreement (MBA) Protocol, a leaderless Byzantine agreement protocol defined for complete and synchronous networks that allows a network of nodes to reach consensus on a vector of relevant i nformation regarding a set of observed events. The consensus process is carried out in parallel on each component, and the output is a vector whose components are either values with wide agreement in the network (even if no individual node agrees on every value) or a special value $bot$ that signals irreconcilable disagreement. The MBA Protocol is probabilistic and its execution halts with probability 1, and the number of steps necessary to halt follows a Bernoulli-like distribution. The design combines a Multidimensional Graded Consensus and a Multidimensional Binary Byzantine Agreement, the generalization to the multidimensional case of two protocols by Micali and Feldman. We prove the correctness and security of the protocol assuming a synchronous network where less than a third of the nodes are malicious.
In the Byzantine agreement problem, n nodes with possibly different input values aim to reach agreement on a common value in the presence of t < n/3 Byzantine nodes which represent arbitrary failures in the system. This paper introduces a generalizat ion of Byzantine agreement, where the input values of the nodes are preference rankings of three or more candidates. We show that consensus on preferences, which is an important question in social choice theory, complements already known results from Byzantine agreement. In addition preferential voting raises new questions about how to approximate consensus vectors. We propose a deterministic algorithm to solve Byzantine agreement on rankings under a generalized validity condition, which we call Pareto-Validity. These results are then extended by considering a special voting rule which chooses the Kemeny median as the consensus vector. For this rule, we derive a lower bound on the approximation ratio of the Kemeny median that can be guaranteed by any deterministic algorithm. We then provide an algorithm matching this lower bound. To our knowledge, this is the first non-trivial multi-dimensional approach which can tolerate a constant fraction of Byzantine nodes.
Traditional techniques for handling Byzantine failures are expensive: digital signatures are too costly, while using $3f{+}1$ replicas is uneconomical ($f$ denotes the maximum number of Byzantine processes). We seek algorithms that reduce the number of replicas to $2f{+}1$ and minimize the number of signatures. While the first goal can be achieved in the message-and-memory model, accomplishing the second goal simultaneously is challenging. We first address this challenge for the problem of broadcasting messages reliably. We consider two variants of this problem, Consistent Broadcast and Reliable Broadcast, typically considered very close. Perhaps surprisingly, we establish a separation between them in terms of signatures required. In particular, we show that Consistent Broadcast requires at least 1 signature in some execution, while Reliable Broadcast requires $O(n)$ signatures in some execution. We present matching upper bounds for both primitives within constant factors. We then turn to the problem of consensus and argue that this separation matters for solving consensus with Byzantine failures: we present a practical consensus algorithm that uses Consistent Broadcast as its main communication primitive. This algorithm works for $n=2f{+}1$ and avoids signatures in the common-case -- properties that have not been simultaneously achieved previously. Overall, our work approaches Byzantine computing in a frugal manner and motivates the use of Consistent Broadcast -- rather than Reliable Broadcast -- as a key primitive for reaching agreement.
137 - Zohir Bouzid 2009
We study the convergence problem in fully asynchronous, uni-dimensional robot networks that are prone to Byzantine (i.e. malicious) failures. In these settings, oblivious anonymous robots with arbitrary initial positions are required to eventually co nverge to an a apriori unknown position despite a subset of them exhibiting Byzantine behavior. Our contribution is twofold. We propose a deterministic algorithm that solves the problem in the most generic settings: fully asynchronous robots that operate in the non-atomic CORDA model. Our algorithm provides convergence in 5f+1-sized networks where f is the upper bound on the number of Byzantine robots. Additionally, we prove that 5f+1 is a lower bound whenever robot scheduling is fully asynchronous. This constrasts with previous results in partially synchronous robots networks, where 3f+1 robots are necessary and sufficient.
The growth of data, the need for scalability and the complexity of models used in modern machine learning calls for distributed implementations. Yet, as of today, distributed machine learning frameworks have largely ignored the possibility of arbitra ry (i.e., Byzantine) failures. In this paper, we study the robustness to Byzantine failures at the fundamental level of stochastic gradient descent (SGD), the heart of most machine learning algorithms. Assuming a set of $n$ workers, up to $f$ of them being Byzantine, we ask how robust can SGD be, without limiting the dimension, nor the size of the parameter space. We first show that no gradient descent update rule based on a linear combination of the vectors proposed by the workers (i.e, current approaches) tolerates a single Byzantine failure. We then formulate a resilience property of the update rule capturing the basic requirements to guarantee convergence despite $f$ Byzantine workers. We finally propose Krum, an update rule that satisfies the resilience property aforementioned. For a $d$-dimensional learning problem, the time complexity of Krum is $O(n^2 cdot (d + log n))$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا