ﻻ يوجد ملخص باللغة العربية
In this paper we will present the Multidimensional Byzantine Agreement (MBA) Protocol, a leaderless Byzantine agreement protocol defined for complete and synchronous networks that allows a network of nodes to reach consensus on a vector of relevant information regarding a set of observed events. The consensus process is carried out in parallel on each component, and the output is a vector whose components are either values with wide agreement in the network (even if no individual node agrees on every value) or a special value $bot$ that signals irreconcilable disagreement. The MBA Protocol is probabilistic and its execution halts with probability 1, and the number of steps necessary to halt follows a Bernoulli-like distribution. The design combines a Multidimensional Graded Consensus and a Multidimensional Binary Byzantine Agreement, the generalization to the multidimensional case of two protocols by Micali and Feldman. We prove the correctness and security of the protocol assuming a synchronous network where less than a third of the nodes are malicious.
In this paper we extend the Multidimensional Byzantine Agreement (MBA) Protocol arXiv:2105.13487v2, a leaderless Byzantine agreement for vectors of arbitrary values, into the emph{Cob} protocol, that works in Asynchronous Gossiping (AG) networks. Thi
We present new protocols for Byzantine state machine replication and Byzantine agreement in the synchronous and authenticated setting. The celebrated PBFT state machine replication protocol tolerates $f$ Byzantine faults in an asynchronous setting us
In the Lattice Agreement (LA) problem, originally proposed by Attiya et al. cite{Attiya:1995}, a set of processes has to decide on a chain of a lattice. More precisely, each correct process proposes an element $e$ of a certain join-semi lattice $L$ a
Consider a distributed system with $n$ processors out of which $f$ can be Byzantine faulty. In the approximate agreement task, each processor $i$ receives an input value $x_i$ and has to decide on an output value $y_i$ such that - the output values
Consensus protocols have traditionally been studied in a setting where all participants are known to each other from the start of the protocol execution. In the parlance of the blockchain literature, this is referred to as the permissioned setting. W