ﻻ يوجد ملخص باللغة العربية
We obtain well behaved interior solutions describing hydrostatic equilibrium of anisotropic relativistic stars in scale-dependent gravity, where Newtons constant is allowed to vary with the radial coordinate throughout the star. Assuming i) a linear equation-of-state in the MIT bag model for quark matter, and ii) a certain profile for the energy density, we integrate numerically the generalized structure equations, and we compute the basic properties of the strange quark stars, such as mass, radius and compactness. Finally, we demonstrate that stability criteria as well as the energy conditions are fulfilled. Our results show that a decreasing Newtons constant throughout the objects leads to slightly more massive and more compact stars.
We consider the effect of a logarithmic f(R) theory, motivated by the form of the one-loop effective action arising from gluons in curved spacetime, on the structure of relativistic stars. In addition to analysing the consistency constraints on the p
In the present work, we extend and generalize our previous work regarding the scale dependence applied to black holes in the presence of non-linear electrodynamics [1]. The starting point for this study is the Einstein-power-Maxwell theory with a van
We present a family of new rotating black hole solutions to Einsteins equations that generalizes the Kerr-Newman spacetime to include an anisotropic matter. The geometry is obtained by employing the Newman-Janis algorithm. In addition to the mass, th
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of