ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotating black holes with an anisotropic matter field

172   0   0.0 ( 0 )
 نشر من قبل Wonwoo Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a family of new rotating black hole solutions to Einsteins equations that generalizes the Kerr-Newman spacetime to include an anisotropic matter. The geometry is obtained by employing the Newman-Janis algorithm. In addition to the mass, the charge and the angular momentum, an additional hair exists thanks to the negative radial pressure of the anisotropic matter. The properties of the black hole are analyzed in detail including thermodynamics. This black hole can be used as a better engine than the Kerr-Newman one in extracting energy.


قيم البحث

اقرأ أيضاً

We obtain the shadow cast induced by the rotating black hole with an anisotropic matter. A Killing tensor representing the hidden symmetry is derived explicitly. The existence of separability structure implies a complete integrability of the geodesic motion. We analyze an effective potential around the unstable circular photon orbits to show that one side of the black hole is brighter than the other side. Further, it is shown that the inclusion of the anisotropic matter ($Kr^{2(1-w)}$) has an effect on the observables of the shadow cast. The shadow observables include approximate shadow radius $R_s$, distortion parameter $delta_s$, area of the shadow $A_s$, and oblateness $D_{os}$.
Kerr-Schild solutions of the Einstein-Maxwell field equations, containing semi-infinite axial singular lines, are investigated. It is shown that axial singularities break up the black hole, forming holes in the horizon. As a result, a tube-like reg ion appears which allows matter to escape from the interior without crossing the horizon. It is argued that axial singularities of this kind, leading to very narrow beams, can be created in black holes by external electromagnetic or gravitational excitations and may be at the origin of astrophysically observable effects such as jet formation.
194 - Marco Astorino 2013
An exact and regular solution, describing a couple of charged and spinning black holes, is generated in an external electromagnetic field, via Ernst technique, in Einstein-Maxwell gravity. A wormhole instantonic solution interpolating between the two black holes is constructed to discuss, at the semi-classical level, the quantum process of creation rate, in an external magnetic field, of this charged and spinning black hole pair.
We studied the spherical accretion of matter by charged black holes on $f(T)$ Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with $p=omega e$ and where $p$ is the pressure and $e$ the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.
We construct analytical and regular solutions in four-dimensional General Relativity which represent multi-black hole systems immersed in external gravitational field configurations. The external field background is composed by an infinite multipolar expansion, which allows to regularise the conical singularities of an array of collinear static black holes. A stationary rotating generalisation is achieved by adding independent angular momenta and NUT parameters to each source of the binary configuration. Moreover, a charged extension of the binary black hole system at equilibrium is generated. Finally, we show that the binary Majumdar-Papapetrou solution is consistently recovered in the vanishing external field limit. All of these solutions reach an equilibrium state due to the external gravitational field only, avoiding in this way the presence of any string or strut defect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا