ﻻ يوجد ملخص باللغة العربية
Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRMA), unifies independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, the spectra matrix produced from NMF may not find a compact spectral basis. It may not guarantee the identifiability of each source as well. To address this problem, here we propose to enhance the identifiability of the source model by a minimum-volume prior distribution. We further regularize a multichannel NMF (MNMF) and ILRMA respectively with the minimum-volume regularizer. The proposed methods maximize the posterior distribution of the separated sources, which ensures the stability of the convergence. Experimental results demonstrate the effectiveness of the proposed methods compared with auxiliary independent vector analysis, MNMF, ILRMA and its extensions.
We present Vibrato Nonnegative Tensor Factorization, an algorithm for single-channel unsupervised audio source separation with an application to separating instrumental or vocal sources with nonstationary pitch from music recordings. Our approach ext
Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art supervised multichannel audio source separation methods. It blindly estimates the demixing filters on the basis of source independence, using the source model estimated
Independent low-rank matrix analysis (ILRMA) is the state-of-the-art algorithm for blind source separation (BSS) in the determined situation (the number of microphones is greater than or equal to that of source signals). ILRMA achieves a great separa
Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art multichannel audio source separation methods using the source power estimation based on deep neural networks (DNNs). The DNN-based power estimation works well for sound
This paper presents a computationally efficient approach to blind source separation (BSS) of audio signals, applicable even when there are more sources than microphones (i.e., the underdetermined case). When there are as many sources as microphones (