ﻻ يوجد ملخص باللغة العربية
We present Vibrato Nonnegative Tensor Factorization, an algorithm for single-channel unsupervised audio source separation with an application to separating instrumental or vocal sources with nonstationary pitch from music recordings. Our approach extends Nonnegative Matrix Factorization for audio modeling by including local estimates of frequency modulation as cues in the separation. This permits the modeling and unsupervised separation of vibrato or glissando musical sources, which is not possible with the basic matrix factorization formulation. The algorithm factorizes a sparse nonnegative tensor comprising the audio spectrogram and local frequency-slope-to-frequency ratios, which are estimated at each time-frequency bin using the Distributed Derivative Method. The use of local frequency modulations as separation cues is motivated by the principle of common fate partial grouping from Auditory Scene Analysis, which hypothesizes that each latent source in a mixture is characterized perceptually by coherent frequency and amplitude modulations shared by its component partials. We derive multiplicative factor updates by Minorization-Maximization, which guarantees convergence to a local optimum by iteration. We then compare our method to the baseline on two separation tasks: one considers synthetic vibrato notes, while the other considers vibrato string instrument recordings.
Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRM
We address the determined audio source separation problem in the time-frequency domain. In independent deeply learned matrix analysis (IDLMA), it is assumed that the inter-frequency correlation of each source spectrum is zero, which is inappropriate
When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recogni
In this paper, we generalize a source generative model in a state-of-the-art blind source separation (BSS), independent low-rank matrix analysis (ILRMA). ILRMA is a unified method of frequency-domain independent component analysis and nonnegative mat
Blind source separation, i.e. extraction of independent sources from a mixture, is an important problem for both artificial and natural signal processing. Here, we address a special case of this problem when sources (but not the mixing matrix) are kn