ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanofabrication of high Q, transferable, diamond resonators

93   0   0.0 ( 0 )
 نشر من قبل Igor Aharonovich
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advancement of diamond based photonic circuitry requires robust fabrication protocols of key components, including diamond resonators and cavities. Here, we present 1D (nanobeam) photonic crystal cavities generated from single crystal diamond membranes utilising a metallic tungsten layer as a restraining, conductive and removable hard mask. The use of tungsten instead of a more conventional silicon oxide layer enables good repeatability and reliability of the fabrication procedures. The process yields high quality diamond cavities with quality factors (Q factors) approaching 10$^$4. Finally, we show that the cavities can be picked up and transferred onto a trenched substrate to realise fully suspended diamond cavities. Our fabrication process demonstrates the capability of diamond membranes as modular components for broader diamond based quantum photonic circuitry.

قيم البحث

اقرأ أيضاً

In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing . The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.
Random lasers use radiative gain and multiple scatterers in disordered media to generate light amplification. In this study, we demonstrate a random laser based on diamond nanoneedles that act as scatterers in combination with fluorescent dye molecul es that serve as a gain medium. Random lasers realized using diamond possess high spectral radiance with angle-free emission and thresholds of 0.16 mJ. The emission dependence on the pillar diameter and density is investigated, and optimum lasing conditions are measured for pillars with spacing and density of 336 nm and ~ 2.9x10^10 cm-2. Our results expand the application space of diamond as a material platform for practical, compact photonic devices and sensing applications.
111 - Shaolin Liao , Lu Ou 2020
The properties of the square array of coupled Microring Resonators (MRRs) with interstitial rings are studied. Dispersion behavior of the interstitial square coupled MRRs is obtained through the transfer matrix method with the Floquet-Bloch periodic condition. Analytical formulas of the eigen wave vectors, band gaps and eigen mode vectors are derived for the special cases of the interstitial square coupled MRRs array with identical couplers and the regular square coupled MRRs array without the interstitial rings. Then, the eigen modes field distribution are calculated for each of the four eigen wave vectors for a given frequency through the secular equation. Finally, numerical simulation is performed for an interstitial square coupled MRRs array with identical couplers and a regular square coupled MRRs array. The simulation result verifies the analytical analysis. Finally, the loaded quality factors of the interstitial 5-ring configuration, the regular 4-ring configuration and the 1-ring configuration are obtained. It is found that the loaded quality factor of the interstitial 5-ring configuration is up to 20 times and 8 times as high as those of the 1-ring configuration and the regular 4-ring configuration respectively, mainly due to the degenerated eigen modes at the resonant frequency. Thus, the interstitial square coupled MRRs array has the great potential to form high-quality integrated photonics components, including filters and resonance based sensing devices like the parity-time symmetric sensors.
Optical whispering-gallery microresonators are useful tools in microphotonics, and nonlinear optics at very low threshold powers. Here, we present details about the fabrication of ultra-high-Q whispering-gallery-mode resonators made by CO2-laser lath e machining of fused-quartz rods. The resonators can be fabricated in less than one minute and the obtained optical quality factors exceed Q = 10^9. Demonstrated resonator diameters are in the range between 170 {mu}m and 8 mm (free spectral ranges between 390 GHz and 8 GHz). Using these microresonators, a variety of optical nonlinearities are observed, including Raman scattering, Brillouin scattering and four-wave mixing.
We demonstrate wheel-shaped silicon optomechanical resonators for resonant operation in ambient air. The high finesse of optical whispering gallery modes (loaded optical Q factor above 500,000) allows for efficient transduction of the wheel resonator s mechanical radial contour modes of frequency up to 1.35 GHz with high mechanical Q factor around 4,000 in air.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا