ﻻ يوجد ملخص باللغة العربية
2-aminooxazole (2AO), a N-heterocyclic molecule, has been proposed as an intermediate in prebiotic syntheses. It has been demonstrated that it can be synthesized from small molecules such as cyanamide and glycoaldehyde, which are present in interstellar space. The aim of this work is to provide infrared spectra, in the solid phase for conditions typical of astrophysical environments and to estimate its stability toward UV photons and cosmic rays. Infrared (4000-600 cm$^{-1}$) absorption spectra at 20 K, 180 K, and 300 K, IR band strengths, and room temperature UV (120-250 nm) absorption spectra are given for the first time for this species. Destruction cross-sections of 9.5 10$^{-18}$ cm$^2$ and 2 10$^{-16}$ cm$^2$ were found in the irradiation at 20 K of pure 2AO and 2AO:H$_2$O ices with UV (6.3-10.9 eV) photons or 5 keV electrons, respectively. These data were used for the estimate of half-life times for the molecule in different environments. It is estimated that 2AO could survive UV radiation and cosmic rays in the ice mantles of dense clouds beyond cloud collapse. In contrast, it would be very unstable at the surface of cold Solar System bodies like Kuiper belt objects, but the molecule could still survive within dust grain agglomerates or cometesimals.
Sulfur is an abundant element in the cosmos and it is thus an important contributor to astrochemistry in the interstellar medium and in the Solar System. Astronomical observations of the gas and of the solid phases in the dense interstellar/circumste
Deeply inside dense molecular clouds and protostellar disks, the interstellar ices are protected from stellar energetic UV photons. However, X-rays and energetic cosmic rays can penetrate inside these regions triggering chemical reactions, molecular
We present ground state photoionization cross sections of atoms and ions averaged over resonance structures for photoionization modeling of astrophysical sources. The detailed cross sections calculated in the close-coupling approximation using the R-
We examine whether the newly derived neutrino spin coherence could lead to large-scale coherent neutrino-antineutrino conversion. In a linear analysis we find that such transformation is largely suppressed, but demonstrate that nonlinear feedback can
We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there