ﻻ يوجد ملخص باللغة العربية
Deeply inside dense molecular clouds and protostellar disks, the interstellar ices are protected from stellar energetic UV photons. However, X-rays and energetic cosmic rays can penetrate inside these regions triggering chemical reactions, molecular dissociation and evaporation processes. We present experimental studies on the interaction of heavy, highly charged and energetic ions (46 MeV Ni^13+) with ammonia-containing ices in an attempt to simulate the physical chemistry induced by heavy ion cosmic rays inside dense astrophysical environments. The measurements were performed inside a high vacuum chamber coupled to the heavy ion accelerator GANIL (Grand Accelerateur National dIons Lourds) in Caen, France.textit{In-situ} analysis is performed by a Fourier transform infrared spectrometer (FTIR) at different fluences. The averaged values for the dissociation cross section of water, ammonia and carbon monoxide due to heavy cosmic ray ion analogs are ~2x10^{-13}, 1.4x10^{-13} and 1.9x10^{-13} cm$^2$, respectively. In the presence of a typical heavy cosmic ray field, the estimated half life for the studied species is 2-3x10^6 years. The ice compaction (micropore collapse) due to heavy cosmic rays seems to be at least 3 orders of magnitude higher than the one promoted by (0.8 MeV) protons . In the case of the irradiated H2O:NH3:CO ice, the infrared spectrum at room temperature reveals five bands that were tentatively assigned to vibration modes of the zwitterionic glycine (+NH3CH2COO-).
Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams
In this work, we studied the stability of the glycine molecule in the crystalline zwitterion form, known as {alpha}-glycine ($^{+}$NH$_{3}$CH$_{2}$COO$^{-}$) under action of heavy cosmic ray analogs. The experiments were conducted in a high vacuum ch
Formic acid (HCOOH) has been extensively detected in space environments, including interstellar medium (gas and grains), comets and meteorites. Such environments are often subjected to the action of ionizing agents, which may cause changes in the mol
2-aminooxazole (2AO), a N-heterocyclic molecule, has been proposed as an intermediate in prebiotic syntheses. It has been demonstrated that it can be synthesized from small molecules such as cyanamide and glycoaldehyde, which are present in interstel
We investigate the interactions of energetic hadronic particles with the media in outflows from star-forming protogalaxies. These particles undergo pion-producing interactions which can drive a heating effect in the outflow, while those advected by t