ترغب بنشر مسار تعليمي؟ اضغط هنا

A bright gamma-ray flare interpreted as a giant magnetar flare in NGC 253

93   0   0.0 ( 0 )
 نشر من قبل Dmitry Svinkin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetars are young, highly magnetized neutron stars that produce extremely rare giant flares of gamma-rays, the most luminous astrophysical phenomena in our Galaxy. The detection of these flares from outside the Local Group of galaxies has been predicted, with just two candidates so far. Here we report on the extremely bright gamma-ray flare GRB 200415A of April 15, 2020, which we localize, using the Interplanetary Network, to a tiny (20 sq. arcmin) area on the celestial sphere, that overlaps the central region of the Sculptor galaxy at 3.5 Mpc from the Milky Way. From the Konus-Wind detections, we find a striking similarity between GRB 200415A and GRB 051103, the even more energetic flare that presumably originated from the M81/M82 group of galaxies at nearly the same distance (3.6 Mpc). Both bursts display a sharp, millisecond-scale, hard-spectrum initial pulse, followed by an approximately 0.2 s long steadily fading and softening tail. Apart from the huge initial pulses of magnetar giant flares, no astrophysical signal with this combination of temporal and spectral properties and implied energy has been reported previously. At the inferred distances, the energy released in both flares is on par with that of the December 27, 2004 superflare from the Galactic magnetar SGR 1806-20, but with a higher peak luminosity. Taken all together, this makes GRB 200415A and its twin GRB 051103 the most significant candidates for extragalactic magnetar giant flares, both a factor of five more luminous than the brightest Galactic magnetar flare observed previously, thus providing an important step towards a better understanding of this fascinating phenomenon.

قيم البحث

اقرأ أيضاً

Magnetars are slowly-rotating neutron stars with extremely strong magnetic fields ($10^{13-15}$ G), episodically emitting $sim100$ ms long X-ray bursts with energies of $sim10^{40-41}$ erg. Rarely, they produce extremely bright, energetic giant flare s that begin with a short ($sim0.2$ s), intense flash, followed by fainter, longer lasting emission modulated by the magnetar spin period (typically 2-12 s), thus confirming their origin. Over the last 40 years, only three such flares have been observed in our local group; they all suffered from instrumental saturation due to their extreme intensity. It has been proposed that extra-galactic giant flares likely constitute a subset of short gamma-ray bursts, noting that the sensitivity of current instrumentation prevents us from detecting the pulsating tail, while the initial bright flash is readily observable out to distances $sim 10-20$ Mpc. Here, we report X- and gamma-ray observations of GRB 200415A, which exhibits a rapid onset, very fast time variability, flat spectra and significant sub-millisecond spectral evolution. These attributes match well with those expected for a giant flare from an extra-galactic magnetar, noting that GRB 200415A is directionally associated with the galaxy NGC 253 ($sim$3.5 Mpc away). The detection of $sim3$ MeV photons provides definitive evidence for relativistic motion of the emitting plasma. The observed rapid spectral evolution can naturally be generated by radiation emanating from such rapidly-moving gas in a rotating magnetar.
The giant flares of soft gamma-ray repeaters (SGRs) have long been proposed to contribute to at least a subsample of the observed short gamma-ray bursts (GRBs). In this paper, we perform a comprehensive analysis of the high-energy data of the recent bright short GRB 200415A, which was located close to the Sculptor galaxy. Our results suggest that a magnetar giant flare provides the most natural explanation for most observational properties of GRB 200415A, including its location, temporal and spectral features, energy, statistical correlations, and high-energy emissions. On the other hand, the compact star merger GRB model is found to have difficulty reproducing such an event in a nearby distance. Future detections and follow-up observations of similar events are essential to firmly establish the connection between SGR giant flares and a subsample of nearby short GRBs.
With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 20 11, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emission is also detected when Cygnus X-3 was weakly flaring in radio, right before transition to the radio quenched state. No Gamma rays are observed during the ~ one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger Gamma-ray emission, implying a connection to the accretion process, and also that the Gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
Sagittarius A* (Sgr A*) is the supermassive black hole residing at the center of the Milky Way. It has been the main target of an extensive multiwavelength campaign we carried out in April 2007. Herein, we report the detection of a bright flare from the vicinity of the horizon, observed simultaneously in X-rays (XMM/EPIC) and near infrared (VLT/NACO) on April 4th for 1-2 h. For the first time, such an event also benefitted from a soft gamma-rays (INTEGRAL/ISGRI) and mid infrared (VLT/VISIR) coverage, which enabled us to derive upper limits at both ends of the flare spectral energy distribution (SED). We discuss the physical implications of the contemporaneous light curves as well as the SED, in terms of synchrotron, synchrotron self-Compton and external Compton emission processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا