ترغب بنشر مسار تعليمي؟ اضغط هنا

A giant radio flare from Cygnus X-3 with associated Gamma-ray emission

409   0   0.0 ( 0 )
 نشر من قبل Stephane Corbel
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emission is also detected when Cygnus X-3 was weakly flaring in radio, right before transition to the radio quenched state. No Gamma rays are observed during the ~ one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger Gamma-ray emission, implying a connection to the accretion process, and also that the Gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

قيم البحث

اقرأ أيضاً

Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy gamma rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hours between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced gamma-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10-12 photons cm-2 s-1 (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.
The microquasar Cygnus X-3 underwent a giant radio flare in April 2017, reaching a maximum flux of $sim 16.5$ Jy at 8.5 GHz. We present results from a long monitoring campaign carried out with Medicina at 8.5, 18.6 and 24.1 GHz, in parallel to the Me tsahovi radio telescope at 37 GHz, from 4 to 11 April 2017. We observe a spectral steepening from $alpha = 0.2$ to 0.5 (with $S_{ u} propto u^{-alpha}$) within 6 h around the epoch of the peak maximum of the flare, and rapid changes in the spectral slope in the following days during brief enhanced emission episodes while the general trend of the radio flux density indicated the decay of the giant flare. We further study the radio orbital modulation of Cyg X-3 emission associated with the 2017 giant flare and with six mini-flares observed in 1983, 1985, 1994, 1995, 2002 and 2016. The enhanced emission episodes observed during the decline of the giant flare at 8.5 GHz coincide with the orbital phase $phi sim 0.5$ (orbital inferior conjunction). On the other hand the light curves of the mini-flares observed at $15-22$ GHz peak at $phi sim 0$, except for the 2016 light curve which is shifted of 0.5 w.r.t. the other ones. We attribute the apparent phase shift to the variable location of the emitting region along the bent jet. This might be explained by the different accretion states of the flaring episodes (the 2016 mini-flare occurred in the hypersoft X-ray state).
The AGILE satellite detected several episodes of transient gamma-ray emission from Cygnus X-3. Cross-correlating the AGILE light curve with both X-ray and radio monitoring data, we found that the main events of gamma-ray activity were detected while the system was in soft spectral X-ray states, that coincide with local and often sharp minima of the hard X-ray flux, a few days before intense radio outbursts. This repetitive temporal coincidence between the gamma-ray transient emission and spectral state changes of the source turns out to be the spectral signature of high-energy activity from this microquasar. The gamma-ray differential spectrum of Cygnus X-3 (100 MeV - 3 GeV), which was obtained by averaging the data collected by AGILE during the gamma-ray events, is consistent with a power law of photon index {alpha} = 2.0 +/- 0.2. Finally, we examined leptonic and hadronic emission models for the gamma-ray activity and found that both scenarios are valid. In particular, in the leptonic model - based on inverse Compton scatterings of mildly relativistic electrons on soft photons from both the Wolf-Rayet companion star and the accretion disk - the emitting particles may also contribute to the overall hard X-ray spectrum, possibly explaining the hard non-thermal power-law tail seen during special soft X-ray states in Cygnus X-3.
Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deep ly studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
Cygnus X-1 is the archetypal black hole (BH) binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV - 3 GeV by the AGILE satellite, durin g the period 2007 July - 2009 October. The total exposure time is about 300 days, during which the source was in the hard X-ray spectral state. We divided the observing intervals in 2 or 4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009, October 16 in a position compatible with Cygnus X-1 optical position. This episode, occurred during a hard spectral state of Cygnus X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cygnus X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data we obtain a 2$sigma$ upper limit for the total integrated flux of $F_{gamma,U.L.} = 3 times 10^{-8} rm ph cm^{-2} s^{-1}$ in the energy range 100 MeV - 3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا