ﻻ يوجد ملخص باللغة العربية
We develop a multicomponent lattice Boltzmann (LB) model for the 2D Rayleigh--Taylor turbulence with a Shan-Chen pseudopotential implemented on GPUs. In the immiscible case this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. Accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion we analyze the balance between different terms describing variations of the kinetic and potential energies. Then, we analyze the role of interface in the energy balance, and also the effects of the vorticity induced by the interface in the energy dissipation. Statistical properties are compared for miscible and immiscible flows. Our results can also be considered as a first validation step to extend the application of LB model to 3D immiscible Rayleigh-Taylor turbulence.
We studied turbulence induced by the Rayleigh-Taylor (RT) instability for 2D immiscible two-component flows by using a multicomponent lattice Boltzmann method with a Shan-Chen pseudopotential implemented on GPUs. We compare our results with the exten
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists
We numerically investigate turbulent Rayleigh-Benard convection within two immiscible fluid layers, aiming to understand how the layer thickness and fluid properties affect the heat transfer (characterized by the Nusselt number $Nu$) in two-layer sys
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and
A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The model development consists of two parts. First, a new kinetic model for Stefan- Maxwell diffusion amongst the species is proposed and realized as a lattice Boltzman