ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat transfer in turbulent Rayleigh-Benard convection within two immiscible fluid layers

97   0   0.0 ( 0 )
 نشر من قبل Hao-Ran Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically investigate turbulent Rayleigh-Benard convection within two immiscible fluid layers, aiming to understand how the layer thickness and fluid properties affect the heat transfer (characterized by the Nusselt number $Nu$) in two-layer systems. Both two- and three-dimensional simulations are performed at fixed global Rayleigh number $Ra=10^8$, Prandtl number $Pr=4.38$, and Weber number $We=5$. We vary the relative thickness of the upper layer between $0.01 le alpha le 0.99$ and the thermal conductivity coefficient ratio of the two liquids between $0.1 le lambda_k le 10$. Two flow regimes are observed: In the first regime at $0.04lealphale0.96$, convective flows appear in both layers and $Nu$ is not sensitive to $alpha$. In the second regime at $alphale0.02$ or $alphage0.98$, convective flow only exists in the thicker layer, while the thinner one is dominated by pure conduction. In this regime, $Nu$ is sensitive to $alpha$. To predict $Nu$ in the system in which the two layers are separated by a unique interface, we apply the Grossmann-Lohse theory for both individual layers and impose heat flux conservation at the interface. Without introducing any free parameter, the predictions for $Nu$ and for the temperature at the interface well agree with our numerical results and previous experimental data.

قيم البحث

اقرأ أيضاً

The effect of rotation on the boundary layers (BLs) in a Rayleigh-Benard (RB) system at a relatively low Rayleigh number, i.e. $Ra = 4times10^7$, is studied for different Pr by direct numerical simulations and the results are compared with laminar BL theory. In this regime we find a smooth onset of the heat transfer enhancement as function of increasing rotation rate. We study this regime in detail and introduce a model based on the Grossmann-Lohse theory to describe the heat transfer enhancement as function of the rotation rate for this relatively low Ra number regime and weak background rotation $Rogtrsim 1$. The smooth onset of heat transfer enhancement observed here is in contrast to the sharp onset observed at larger $Ra gtrsim 10^8$ by Stevens {it{et al.}} [Phys. Rev. Lett. {bf{103}}, 024503, 2009], although only a small shift in the Ra-Ro-Pr phase space is involved.
98 - Ao Xu , Xin Chen , Feng Wang 2020
To understand how internal flow structures manifest themselves in the global heat transfer, we study the correlation between different flow modes and the instantaneous Nusselt number ($Nu$) in a two-dimensional square Rayleigh-Benard convection cell. High-resolution and long-time direct numerical simulations are carried out for Rayleigh numbers between $10^{7}$ and $10^{9}$ and a Prandtl number of 5.3. The investigated Nusselt numbers include the volume-averaged $Nu_{text{vol}}$, the wall-averaged $Nu_{text{wall}}$, the kinetic energy dissipation based $Nu_{text{kinetic}}$, and the thermal energy dissipation based $Nu_{text{thermal}}$. The Fourier mode decomposition and proper orthogonal decomposition are adopted to extract the coherent flow structure. Our results show that the single-roll mode, the horizontally stacked double-roll mode, and the quadrupolar flow mode are more efficient for heat transfer on average. In contrast, the vertically stacked double-roll mode is inefficient for heat transfer on average. The volume-averaged $Nu_{text{vol}}$ and the kinetic energy dissipation based $Nu_{text{kinetic}}$ can better reproduce the correlation of internal flow structures with heat transfer efficiency than that of the wall-averaged $Nu_{text{wall}}$ and the thermal energy dissipation based $Nu_{text{thermal}}$, even though these four Nusselt numbers give consistent time-averaged mean values. The ensemble-averaged time trace of $Nu$ during flow reversal shows that only the volume-averaged $Nu_{text{vol}}$ can reproduce the overshoot phenomena that is observed in the previous experimental study. Our results reveal that the proper choice of $Nu$ is critical to obtain a meaningful interpretation.
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$ are observed with $gammaapprox 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.
When the classical Rayleigh-Benard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotat ion) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at $Ra sim 10^8-10^9$ ($Pr=4-6$) and $0 lesssim 1/Ro lesssim 25$ we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It turns out that the vertical wall temperature gradient in regimes II and III has a different origin than that observed in regime I. It is caused by boundary layer dynamics characteristic for rotating flows, which drives a secondary flow that transports hot fluid up the sidewall in the lower part of the container and cold fluid downwards along the sidewall in the top part.
In this numerical study on Rayleigh-Benard convection we seek to improve the heat transfer by passive means. To this end we introduce a single tilted conductive barrier centered in an aspect ratio one cell, breaking the symmetry of the geometry and t o channel the ascending hot and descending cold plumes. We study the global and local heat transfer and the flow organization for Rayleigh numbers $10^5 leq Ra leq 10^9$ for a fixed Prandtl number of $Pr=4.3$. We find that the global heat transfer can be enhanced up to $18%$, and locally around $800%$. The averaged Reynolds number is always decreased when a barrier is introduced, even for those cases where the global heat transfer is increased. We map the entire parameter space spanned by the orientation and the size of a single barrier for $Ra=10^8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا