ﻻ يوجد ملخص باللغة العربية
In the interaction between control and mathematics, mathematical tools are fundamental for all the control methods, but it is unclear how control impacts mathematics. This is the first part of our paper that attempts to give an answer with focus on solving linear algebraic equations (LAEs) from the perspective of systems and control, where it mainly introduces the controllability-based design results. By proposing an iterative method that integrates a learning control mechanism, a class of tracking problems for iterative learning control (ILC) is explored for the problem solving of LAEs. A trackability property of ILC is newly developed, by which analysis and synthesis results are established to disclose the equivalence between the solvability of LAEs and the controllability of discrete control systems. Hence, LAEs can be solved by equivalently achieving the perfect tracking tasks of resulting ILC systems via the classic state feedback-based design and analysis methods. It is shown that the solutions for any solvable LAE can all be calculated with different selections of the initial input. Moreover, the presented ILC method is applicable to determining all the least squares solutions of any unsolvable LAE. In particular, a deadbeat design is incorporated to ILC such that the solving of LAEs can be completed within finite iteration steps. The trackability property is also generalized to conventional two-dimensional ILC systems, which creates feedback-based methods, instead of the common used contraction mapping-based methods, for the design and convergence analysis of ILC.
A robust Learning Model Predictive Controller (LMPC) for uncertain systems performing iterative tasks is presented. At each iteration of the control task the closed-loop state, input and cost are stored and used in the controller design. This paper f
This work investigates robust monotonic convergent iterative learning control (ILC) for uncertain linear systems in both time and frequency domains, and the ILC algorithm optimizing the convergence speed in terms of $l_{2}$ norm of error signals is d
In this paper a novel approach to co-design controller and attack detector for nonlinear cyber-physical systems affected by false data injection (FDI) attack is proposed. We augment the model predictive controller with an additional constraint requir
In this paper, we consider a stochastic Model Predictive Control able to account for effects of additive stochastic disturbance with unbounded support, and requiring no restrictive assumption on either independence nor Gaussianity. We revisit the rat
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly