ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Monotonic Convergent Iterative Learning Control Design: an LMI-based Method

81   0   0.0 ( 0 )
 نشر من قبل Lanlan Su
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Lanlan Su




اسأل ChatGPT حول البحث

This work investigates robust monotonic convergent iterative learning control (ILC) for uncertain linear systems in both time and frequency domains, and the ILC algorithm optimizing the convergence speed in terms of $l_{2}$ norm of error signals is derived. Firstly, it is shown that the robust monotonic convergence of the ILC system can be established equivalently by the positive definiteness of a matrix polynomial over some set. Then, a necessary and sufficient condition in the form of sum of squares (SOS) for the positive definiteness is proposed, which is amendable to the feasibility of linear matrix inequalities (LMIs). Based on such a condition, the optimal ILC algorithm that maximizes the convergence speed is obtained by solving a set of convex optimization problems. Moreover, the order of the learning function can be chosen arbitrarily so that the designers have the flexibility to decide the complexity of the learning algorithm.



قيم البحث

اقرأ أيضاً

428 - Ugo Rosolia , Xiaojing Zhang , 2019
A robust Learning Model Predictive Controller (LMPC) for uncertain systems performing iterative tasks is presented. At each iteration of the control task the closed-loop state, input and cost are stored and used in the controller design. This paper f irst illustrates how to construct robust invariant sets and safe control policies exploiting historical data. Then, we propose an iterative LMPC design procedure, where data generated by a robust controller at iteration $j$ are used to design a robust LMPC at the next $j+1$ iteration. We show that this procedure allows us to iteratively enlarge the domain of the control policy and it guarantees recursive constraints satisfaction, input to state stability and performance bounds for the certainty equivalent closed-loop system. The use of an adaptive prediction horizon is the key element of the proposed design. The effectiveness of the proposed control scheme is illustrated on a linear system subject to bounded additive disturbance.
We present a convex optimization to reduce the impact of sensor falsification attacks in linear time invariant systems controlled by observer-based feedback. We accomplish this by finding optimal observer and controller gain matrices that minimize th e size of the reachable set of attack-induced states. To avoid trivial solutions, we integrate a covariance-based $|H|_2$ closed-loop performance constraint, for which we develop a novel linearization for this typically nonlinear, non-convex problem. We demonstrate the effectiveness of this linear matrix inequality framework through a numerical case study.
145 - Deyuan Meng , Yuxin Wu 2021
In the interaction between control and mathematics, mathematical tools are fundamental for all the control methods, but it is unclear how control impacts mathematics. This is the first part of our paper that attempts to give an answer with focus on s olving linear algebraic equations (LAEs) from the perspective of systems and control, where it mainly introduces the controllability-based design results. By proposing an iterative method that integrates a learning control mechanism, a class of tracking problems for iterative learning control (ILC) is explored for the problem solving of LAEs. A trackability property of ILC is newly developed, by which analysis and synthesis results are established to disclose the equivalence between the solvability of LAEs and the controllability of discrete control systems. Hence, LAEs can be solved by equivalently achieving the perfect tracking tasks of resulting ILC systems via the classic state feedback-based design and analysis methods. It is shown that the solutions for any solvable LAE can all be calculated with different selections of the initial input. Moreover, the presented ILC method is applicable to determining all the least squares solutions of any unsolvable LAE. In particular, a deadbeat design is incorporated to ILC such that the solving of LAEs can be completed within finite iteration steps. The trackability property is also generalized to conventional two-dimensional ILC systems, which creates feedback-based methods, instead of the common used contraction mapping-based methods, for the design and convergence analysis of ILC.
In this paper, we consider the application of optimal periodic control sequences to switched dynamical systems. The control sequence is obtained using a finite-horizon optimal method based on dynamic programming. We then consider Euler approximate so lutions for the system extended with bounded perturbations. The main result gives a simple condition on the perturbed system for guaranteeing the existence of a stable limit cycle of the unperturbed system. An illustrative numerical example is provided which demonstrates the applicability of the method.
Accounting for more than 40% of global energy consumption, residential and commercial buildings will be key players in any future green energy systems. To fully exploit their potential while ensuring occupant comfort, a robust control scheme is requi red to handle various uncertainties, such as external weather and occupant behaviour. However, prominent patterns, especially periodicity, are widely seen in most sources of uncertainty. This paper incorporates this correlated structure into the learning model predictive control framework, in order to learn a global optimal robust control scheme for building operations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا