ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexible Validity Conditions for the Multivariate Matern Covariance in any Spatial Dimension and for any Number of Components

153   0   0.0 ( 0 )
 نشر من قبل Philip White
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Flexible multivariate covariance models for spatial data are on demand. This paper addresses the problem of parametric constraints for positive semidefiniteness of the multivariate Mat{e}rn model. Much attention has been given to the bivariate case, while highly multivariate cases have been explored to a limited extent only. The existing conditions often imply severe restrictions on the upper bounds for the collocated correlation coefficients, which makes the multivariate Mat{e}rn model appealing for the case of weak spatial cross-dependence only. We provide a collection of validity conditions for the multivariate Mat{e}rn covariance model that allows for more flexible parameterizations than those currently available. We also prove that, in several cases, we can attain much higher upper bounds for the collocated correlation coefficients in comparison with our competitors. We conclude with a simple illustration on a trivariate geochemical dataset and show that our enlarged parametric space allows for better fitting performance with respect to our competitors.



قيم البحث

اقرأ أيضاً

The assumption of separability of the covariance operator for a random image or hypersurface can be of substantial use in applications, especially in situations where the accurate estimation of the full covariance structure is unfeasible, either for computational reasons, or due to a small sample size. However, inferential tools to verify this assumption are somewhat lacking in high-dimensional or functional {data analysis} settings, where this assumption is most relevant. We propose here to test separability by focusing on $K$-dimensional projections of the difference between the covariance operator and a nonparametric separable approximation. The subspace we project onto is one generated by the eigenfunctions of the covariance operator estimated under the separability hypothesis, negating the need to ever estimate the full non-separable covariance. We show that the rescaled difference of the sample covariance operator with its separable approximation is asymptotically Gaussian. As a by-product of this result, we derive asymptotically pivotal tests under Gaussian assumptions, and propose bootstrap methods for approximating the distribution of the test statistics. We probe the finite sample performance through simulations studies, and present an application to log-spectrogram images from a phonetic linguistics dataset.
We offer a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce element- wise and spectrum-wise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key observation is that the estimators needs to adapt to the sample size, dimensionality of the data and the noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate their practical use, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.
Monitoring several correlated quality characteristics of a process is common in modern manufacturing and service industries. Although a lot of attention has been paid to monitoring the multivariate process mean, not many control charts are available for monitoring the covariance matrix. This paper presents a comprehensive overview of the literature on control charts for monitoring the covariance matrix in a multivariate statistical process monitoring (MSPM) framework. It classifies the research that has previously appeared in the literature. We highlight the challenging areas for research and provide some directions for future research.
In this paper, a new mixture family of multivariate normal distributions, formed by mixing multivariate normal distribution and skewed distribution, is constructed. Some properties of this family, such as characteristic function, moment generating fu nction, and the first four moments are derived. The distributions of affine transformations and canonical forms of the model are also derived. An EM type algorithm is developed for the maximum likelihood estimation of model parameters. We have considered in detail, some special cases of the family, using standard gamma and standard exponential mixture distributions, denoted by MMNG and MMNE, respectively. For the proposed family of distributions, different multivariate measures of skewness are computed. In order to examine the performance of the developed estimation method, some simulation studies are carried out to show that the maximum likelihood estimates based on the EM type algorithm do provide good performance. For different choices of parameters of MMNE distribution, several multivariate measures of skewness are computed and compared. Because some measures of skewness are scalar and some are vectors, in order to evaluate them properly, we have carried out a simulation study to determine the power of tests, based on samp
Multivariate space-time data are increasingly available in various scientific disciplines. When analyzing these data, one of the key issues is to describe the multivariate space-time dependencies. Under the Gaussian framework, one needs to propose re levant models for multivariate space-time covariance functions, i.e. matrix-valued mappings with the additional requirement of non-negative definiteness. We propose a flexible parametric class of cross-covariance functions for multivariate space-time Gaussian random fields. Space-time components belong to the (univariate) Gneiting class of space-time covariance functions, with Matern or Cauchy covariance functions in the spatial margins. The smoothness and scale parameters can be different for each variable. We provide sufficient conditions for positive definiteness. A simulation study shows that the parameters of this model can be efficiently estimated using weighted pairwise likelihood, which belongs to the class of composite likelihood methods. We then illustrate the model on a French dataset of weather variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا