ترغب بنشر مسار تعليمي؟ اضغط هنا

Family of mean-mixtures of multivariate normal distributions: properties, inference and assessment of multivariate skewness

155   0   0.0 ( 0 )
 نشر من قبل Ahad Jamalizadeh
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a new mixture family of multivariate normal distributions, formed by mixing multivariate normal distribution and skewed distribution, is constructed. Some properties of this family, such as characteristic function, moment generating function, and the first four moments are derived. The distributions of affine transformations and canonical forms of the model are also derived. An EM type algorithm is developed for the maximum likelihood estimation of model parameters. We have considered in detail, some special cases of the family, using standard gamma and standard exponential mixture distributions, denoted by MMNG and MMNE, respectively. For the proposed family of distributions, different multivariate measures of skewness are computed. In order to examine the performance of the developed estimation method, some simulation studies are carried out to show that the maximum likelihood estimates based on the EM type algorithm do provide good performance. For different choices of parameters of MMNE distribution, several multivariate measures of skewness are computed and compared. Because some measures of skewness are scalar and some are vectors, in order to evaluate them properly, we have carried out a simulation study to determine the power of tests, based on samp



قيم البحث

اقرأ أيضاً

94 - Ruth Heller , Yair Heller 2016
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide condit ions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
Modeling of longitudinal data often requires diffusion models that incorporate overall time-dependent, nonlinear dynamics of multiple components and provide sufficient flexibility for subject-specific modeling. This complexity challenges parameter in ference and approximations are inevitable. We propose a method for approximate maximum-likelihood parameter estimation in multivariate time-inhomogeneous diffusions, where subject-specific flexibility is accounted for by incorporation of multidimensional mixed effects and covariates. We consider $N$ multidimensional independent diffusions $X^i = (X^i_t)_{0leq tleq T^i}, 1leq ileq N$, with common overall model structure and unknown fixed-effects parameter $mu$. Their dynamics differ by the subject-specific random effect $phi^i$ in the drift and possibly by (known) covariate information, different initial conditions and observation times and duration. The distribution of $phi^i$ is parametrized by an unknown $vartheta$ and $theta = (mu, vartheta)$ is the target of statistical inference. Its maximum likelihood estimator is derived from the continuous-time likelihood. We prove consistency and asymptotic normality of $hat{theta}_N$ when the number $N$ of subjects goes to infinity using standard techniques and consider the more general concept of local asymptotic normality for less regular models. The bias induced by time-discretization of sufficient statistics is investigated. We discuss verification of conditions and investigate parameter estimation and hypothesis testing in simulations.
We propose a new adaptive empirical Bayes framework, the Bag-Of-Null-Statistics (BONuS) procedure, for multiple testing where each hypothesis testing problem is itself multivariate or nonparametric. BONuS is an adaptive and interactive knockoff-type method that helps improve the testing power while controlling the false discovery rate (FDR), and is closely connected to the counting knockoffs procedure analyzed in Weinstein et al. (2017). Contrary to procedures that start with a $p$-value for each hypothesis, our method analyzes the entire data set to adaptively estimate an optimal $p$-value transform based on an empirical Bayes model. Despite the extra adaptivity, our method controls FDR in finite samples even if the empirical Bayes model is incorrect or the estimation is poor. An extension, the Double BONuS procedure, validates the empirical Bayes model to guard against power loss due to model misspecification.
In this paper we show that the family P_d of probability distributions on R^d with log-concave densities satisfies a strong continuity condition. In particular, it turns out that weak convergence within this family entails (i) convergence in total va riation distance, (ii) convergence of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. Hence the nonparametric model P_d has similar properties as parametric models such as, for instance, the family of all d-variate Gaussian distributions.
Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices. We develop a Bayesian method to incorporate covariate information in this GGMs setup in a nonlinear seemingly unrelated regression framework. We propose a joint predictor and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search the joint model space. Furthermore, we investigate its theoretical variable selection properties. We demonstrate our method on a variety of simulated data, concluding with a real data set from the TCPA project.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا