ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the accuracy of cosmological parameters estimated from velocity -- density comparisons via simulations

209   0   0.0 ( 0 )
 نشر من قبل Amber Hollinger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A promising method for measuring the cosmological parameter combination fsigma_8 is to compare observed peculiar velocities with peculiar velocities predicted from a galaxy density field using perturbation theory. We use N-body simulations and semi-analytic galaxy formation models to quantify the accuracy and precision of this method. Specifically, we examine a number of technical aspects, including the optimal smoothing length applied to the density field, the use of dark matter halos or galaxies as tracers of the density field, the effect of noise in the halo mass estimates or in the stellar-to-halo mass relation, and the effect of finite survey volumes. We find that for a Gaussian smoothing of 4 Mpc/h, the method has only small systematic biases at the level of 5%. Cosmic variance affects current measurements at the 5% level due to the volume of current redshift data sets.



قيم البحث

اقرأ أيضاً

We determine the dark matter pair-wise relative velocity distribution in a set of Milky Way-like halos in the Auriga and APOSTLE simulations. Focusing on the smooth halo component, the relative velocity distribution is well-described by a Maxwell-Bol tzmann distribution over nearly all radii in the halo. We explore the implications for velocity-dependent dark matter annihilation, focusing on four models which scale as different powers of the relative velocity: Sommerfeld, s-wave, p-wave, and d-wave models. We show that the J-factors scale as the moments of the relative velocity distribution, and that the halo-to-halo scatter is largest for d-wave, and smallest for Sommerfeld models. The J-factor is strongly correlated with the dark matter density in the halo, and is very weakly correlated with the velocity dispersion. This implies that if the dark matter density in the Milky Way can be robustly determined, one can accurately predict the dark matter annihilation signal, without the need to identify the dark matter velocity distribution in the Galaxy.
We exploit a suite of large N-body simulations (up to N=$4096^3$) performed with Abacus, of scale-free models with a range of spectral indices $n$, to better understand and quantify convergence of the matter power spectrum in dark matter only cosmolo gical N-body simulations. Using self-similarity to identify converged regions, we show that the maximal wavenumber resolved at a given level of accuracy increases monotonically as a function of time. At the $1%$ level it starts at early times from a fraction of $k_Lambda$, the Nyquist wavenumber of the initial grid, and reaches at most, if the force softening is sufficiently small, $sim 2 k_Lambda$ at the very latest times we evolve to. At the $5%$ level accuracy extends up to slightly larger wavenumbers, of order $5k_Lambda$ at late times. Expressed as a suitable function of the scale-factor, accuracy shows a very simple $n$-dependence, allowing a straightforward extrapolation to place conservative bounds on the accuracy of N-body simulations of non-scale free models like LCDM. Quantitatively our findings are broadly in line with the conservative assumptions about resolution adopted by recent studies using large cosmological simulations (e.g. Euclid Flagship) aiming to constrain the mildly non-linear regime. On the other hand, we note that studies of the matter power spectrum in the literature have often used data at larger wavenumbers, where convergence to the physical result is poor. Even qualitative conclusions about clustering at small scales, e.g concerning the validity of the stable clustering approximation, may need revision in light of our results.
111 - Martin Kilbinger 2018
In this manuscript of the habilitation `a diriger des recherches (HDR), the author presents some of his work over the last ten years. The main topic of this thesis is cosmic shear, the distortion of images of distant galaxies due to weak gravitationa l lensing by the large-scale structure in the Universe. Cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. I review the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then I give an overview of weak-lensing measurements, and present observational results from the Canada-France Hawaii Lensing Survey (CFHTLenS), as well as the implications for cosmology. I conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
In this paper we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard 6-parameter LCDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard 6-parameter LCDM analysis we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data shows some tension with LCDM. The origin of this 1 to 2 sigma tension remains unclear, and may point to new physics, residual systematics or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS Luminous Red Galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, alpha(cdmi)<0.11 (95 % CL), neutrino density, alpha(ndi)<0.26 (95 % CL), and neutrino velocity, alpha(nvi)<0.23 (95 % CL), modes. Our analysis sets a benchmark for future polarization experiments.
138 - Jun-Hwan Choi 2010
We develop a new ``Multicomponent and Variable Velocity (MVV) galactic outflow model for cosmological smoothed particle hydrodynamic (SPH) simulations. The MVV wind model reflects the fact that the wind material can arise from different phases in the interstellar medium (ISM), and the mass-loading factor in the MVV model is a function of galaxy stellar mass. We find that the simulation with the MVV outflow has the following characteristics: (i) the intergalactic medium (IGM) is hardly heated up, and the mean IGM temperature is almost the same as in the no-wind run; (ii) it has lower cosmic star formation rates (SFRs) compared to the no-wind run, but higher SFRs than the constant velocity wind run; (iii) it roughly agrees with the observed IGM metallicity, and roughly follows the observed evolution of Omega(Civ); (iv) the lower mass galaxies have larger mass-loading factors, and the low-mass end of galaxy stellar mass function is flatter than in the previous simulations. Therefore, the MVV outflow model mildly alleviates the problem of too steep galaxy stellar mass function seen in the previous SPH simulations. In summary, the new MVV outflow model shows reasonable agreement with observations, and gives better results than the constant velocity wind model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا