ﻻ يوجد ملخص باللغة العربية
We develop a new ``Multicomponent and Variable Velocity (MVV) galactic outflow model for cosmological smoothed particle hydrodynamic (SPH) simulations. The MVV wind model reflects the fact that the wind material can arise from different phases in the interstellar medium (ISM), and the mass-loading factor in the MVV model is a function of galaxy stellar mass. We find that the simulation with the MVV outflow has the following characteristics: (i) the intergalactic medium (IGM) is hardly heated up, and the mean IGM temperature is almost the same as in the no-wind run; (ii) it has lower cosmic star formation rates (SFRs) compared to the no-wind run, but higher SFRs than the constant velocity wind run; (iii) it roughly agrees with the observed IGM metallicity, and roughly follows the observed evolution of Omega(Civ); (iv) the lower mass galaxies have larger mass-loading factors, and the low-mass end of galaxy stellar mass function is flatter than in the previous simulations. Therefore, the MVV outflow model mildly alleviates the problem of too steep galaxy stellar mass function seen in the previous SPH simulations. In summary, the new MVV outflow model shows reasonable agreement with observations, and gives better results than the constant velocity wind model.
Recently Menard et al. detected a subtle but systematic change in the mean color of quasars as a function of their projected separation from foreground galaxies, extending to comoving separations of ~10Mpc/h, which they interpret as a signature of re
We examine the past and current work on the star formation (SF) histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandab
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems
We examine the global HI properties of galaxies in quarter-billion particle cosmological simulations using Gadget-2, focusing on how galactic outflows impact HI content. We consider four outflow models, including a new one (ezw) motivated by recent i
Massive galaxies today typically are not forming stars despite being surrounded by hot gaseous halos with short central cooling times. This likely owes to some form of quenching feedback such as merger-driven quasar activity or radio jets emerging fr