ﻻ يوجد ملخص باللغة العربية
Person Re-Identification (Re-ID) is of great importance to the many video surveillance systems. Learning discriminative features for Re-ID remains a challenge due to the large variations in the image space, e.g., continuously changing human poses, illuminations and point of views. In this paper, we propose HAVANA, a novel extensible, light-weight HierArchical and VAriation-Normalized Autoencoder that learns features robust to intra-class variations. In contrast to existing generative approaches that prune the variations with heavy extra supervised signals, HAVANA suppresses the intra-class variations with a Variation-Normalized Autoencoder trained with no additional supervision. We also introduce a novel Jensen-Shannon triplet loss for contrastive distribution learning in Re-ID. In addition, we present Hierarchical Variation Distiller, a hierarchical VAE to factorize the latent representation and explicitly model the variations. To the best of our knowledge, HAVANA is the first VAE-based framework for person ReID.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address bot
Recently, with the advance of deep Convolutional Neural Networks (CNNs), person Re-Identification (Re-ID) has witnessed great success in various applications. However, with limited receptive fields of CNNs, it is still challenging to extract discrimi
Recent years have witnessed a substantial increase in the deep learning (DL)architectures proposed for visual recognition tasks like person re-identification,where individuals must be recognized over multiple distributed cameras. Althoughthese archit
Style variation has been a major challenge for person re-identification, which aims to match the same pedestrians across different cameras. Existing works attempted to address this problem with camera-invariant descriptor subspace learning. However,
In real-world video surveillance applications, person re-identification (ReID) suffers from the effects of occlusions and detection errors. Despite recent advances, occlusions continue to corrupt the features extracted by state-of-art CNN backbones,