ﻻ يوجد ملخص باللغة العربية
This paper considers the spreading speed of cooperative nonlocal dispersal system with irreducible reaction functions and non-uniform initial data. Here the non-uniformity means that all components of initial data decay exponentially but their decay rates are different. It is well-known that in a monostable reaction-diffusion or nonlocal dispersal equation, different decay rates of initial data yield different spreading speeds. In this paper, we show that due to the cooperation and irreducibility of reaction functions, all components of the solution with non-uniform initial data will possess a uniform spreading speed which non-increasingly depends only on the smallest decay rate of initial data. The nonincreasing property of the uniform spreading speed further implies that the component with the smallest decay rate can accelerate the spatial propagation of other components. In addition, all the methods in this paper can be carried over to the cooperative system with classical diffusion (i.e. random diffusion).
In this paper, we first establish the local well-posedness (existence, uniqueness and continuous dependence) for the Fornberg-Whitham equation in both supercritical Besov spaces $B^s_{p,r}, s>1+frac{1}{p}, 1leq p,rleq+infty$ and critical Besov spaces
We consider a class of cooperative reaction-diffusion systems with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by integral operators involving suitable kernel functions, and they are allowed not to appear in
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linear
We give a comprehensive study of strong uniform attractors of non-autonomous dissipative systems for the case where the external forces are not translation compact. We introduce several new classes of external forces which are not translation compact
Many results in modern astrophysics rest on the notion that the Initial Mass Function (IMF) is universal. Our observations of HI selected galaxies in the light of H-alpha and the far-ultraviolet (FUV) challenge this notion. The flux ratio H-alpha/FUV