ترغب بنشر مسار تعليمي؟ اضغط هنا

HELIOS-K 2.0 Opacity Calculator and Open-source Opacity Database for Exoplanetary Atmospheres

114   0   0.0 ( 0 )
 نشر من قبل Simon Grimm
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Computing and using opacities is a key part of modeling and interpreting data of exoplanetary atmospheres. Since the underlying spectroscopic line lists are constantly expanding and currently include up to ~ 10^10 - 10^11 transition lines, the opacity calculator codes need to become more powerful. Here we present major upgrades to the HELIOS-K GPU-accelerated opacity calculator and describe the necessary steps to process large line lists within a reasonable amount of time. Besides performance improvements, we include more capabilities and present a toolbox for handling different atomic and molecular data sets: from downloading and pre-processing the data to performing the opacity calculations in a user-friendly way. HELIOS-K supports line lists from ExoMol, HITRAN, HITEMP, NIST, Kurucz and VALD3. By matching the resolution of 0.1 cm^-1 and cutting length of 25 cm^-1 used by the ExoCross code for timing performance (251 seconds excluding data read-in time), HELIOS-K can process the ExoMol BT2 water line list in 12.5 seconds. Using a resolution of 0.01 cm^-1, it takes 45 seconds - equivalent to about 10^7 lines per second. As a wavenumber resolution of 0.01 cm^-1 suffices for most exoplanetary atmosphere spectroscopic calculations, we adopt this resolution in calculating opacity functions for several hundred atomic and molecular species, and make them freely available on the open-access DACE database. For the opacity calculations of the database, we use a cutting length of 100 cm^-1 for molecules and no cutting length for atoms. Our opacities are available for downloading from https://dace.unige.ch/opacityDatabase and may be visualized using https://dace.unige.ch/opacity.



قيم البحث

اقرأ أيضاً

We present an improved, hybrid CPU-GPU atmospheric retrieval code, Helios-r2, which is applicable to medium-resolution emission spectra of brown dwarfs, in preparation for precision atmospheric spectroscopy in the era of the James Webb Space Telescop e. The model is available as open-source code on the Exoclimes Simulation Platform. We subject Helios-r2 to a battery of tests of varying difficulty. The simplest test involves a mock retrieval on a forward model generated using the same radiative transfer technique, the same implementation of opacities, and the same chemistry model. The least trivial test involves a mock retrieval on synthetic spectra from the Sonora model grid, which uses a different radiative transfer technique, a different implementation of opacities, and a different chemistry model. A calibration factor, which is included to capture uncertainties in the brown dwarf radius, distance to the brown dwarf and flux calibration of the spectrum, may compensate, sometimes erroneously, for discrepancies in modeling choices and implementation. We analyze spectra of the benchmark brown dwarf GJ 570 D and the binary brown dwarf companions in the Epsilon Indi system. The retrieved surface gravities are consistent with previous studies and/or values inferred from dynamical masses (for Epsilon Indi Ba and Bb only). There remains no clear criterion on how to reject unphysical values of the retrieved brown dwarf radii. The inferred radii and corresponding masses should be taken with great caution. The retrieved carbon-to-oxygen ratios and metallicity depend on whether chemical equilibrium is assumed.
A publicly available database of opacities for molecules of astrophysical interest, ExoMolOP, has been compiled for over 80 species, based on the latest line list data from the ExoMol, HITEMP and MoLLIST databases. These data are generally suitable f or characterising high temperature exoplanet or cool stellar/substellar atmospheres, and have been computed at a variety of pressures and temperatures, with a few molecules included at room-temperature only from the HITRAN database. The data are formatted in different ways for four different exoplanet atmosphere retrieval codes; ARCiS, TauREx, NEMESIS and petitRADTRANS, and include both cross-sections (at R~=~$frac{lambda}{Delta lambda}$~=~15,000) and k-tables (at R~=~$frac{lambda}{Delta lambda}$~=~1000) for the 0.3~-~50$mu$m wavelength region. Opacity files can be downloaded and used directly for these codes. Atomic data for alkali metals Na and K are also included, using data from the NIST database and the latest line shapes for the resonance lines. Broadening parameters have been taken from the literature where available, or from those for a known molecule with similar molecular properties where no broadening data are available. The data are available from www.exomol.com.
Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions [J.E. Bailey et al., Phys. Plasmas 16, 058101 (2009)]. The iron sample is placed on top of the Sandia National Laboratories z-pinch d ynamic hohlraum (ZPDH) radiation source. The samples are heated to 150 - 200 eV electron temperatures and 7e21 - 4e22 e/cc electron densities by the ZPDH radiation and backlit at its stagnation [T. Nagayama et al., Phys. Plasmas 21, 056502 (2014)]. The backlighter attenuated by the heated sample plasma is measured by four spectrometers along +/- 9 degree with respect to the z-pinch axis to infer the sample iron opacity. Here we describe measurements of the source-to-sample distance that exploit the parallax of spectrometers that view the half-moon-shaped sample from +/-9 degree. The measured sample temperature decreases with increased source-to-sample distance. This distance must be taken into account for understanding the sample heating.
Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planet ary systems a twin of the solar system. Such diversity on many scales and structural levels requires fundamental theoretical approaches. Large efforts are underway to develop individual aspects of exoplanet sciences, like exoplanet atmospheres, cloud formation, disk chemistry, planet system dynamics, mantle convection, mass loss of planetary atmospheres. The following challenges need to be addressed in tandem with observational efforts. They provide the opportunity to progress our understanding of exoplanets and their atmospheres by exploring our models as virtual laboratories to fill gaps in observational data from different instruments and missions, and taken at different instances of times: Challenge a) Building complex models based on theoretical rigour that aim to understand the interactions of atmospheric processes, to treat cloud formation and its feedback onto the gas-phase chemistry and the energy budget of the planetary atmosphere moving away from solar-system inspired parameterisations. Challenge b) Enabling cloud modelling based on fundamental physio-chemical insights in order to be applicable to the large and unexplored chemical, radiative and thermodynamical parameter range of exoplanets in the universe. Challenge b) will be explored in this chapter of the book ExoFrontiers.
248 - Mario Damiano , Renyu Hu , 2020
Direct imaging of widely separated exoplanets from space will obtain their reflected light spectra and measure atmospheric properties. Previous calculations have shown that a change in the orbital phase would cause a spectral signal, but whether this signal may be used to characterize the atmosphere has not been shown. We simulate starshade-enabled observations of the planet 47 Uma b, using the to-date most realistic simulator SISTER to estimate the uncertainties due to residual starlight, solar glint, and exozodiacal light. We then use the Bayesian retrieval algorithm ExoReL$^Re$ to determine the constraints on the atmospheric properties from observations using a Roman- or HabEx-like telescope, comparing the strategies to observe at multiple orbital phases or in multiple wavelength bands. With a $sim20%$ bandwidth in 600 - 800 nm on a Roman-like telescope, the retrieval finds a degenerate scenario with a lower gas abundance and a deeper or absent cloud than the truth. Repeating the observation at a different orbital phase or at a second $20%$ wavelength band in 800 - 1000 nm, with the same integration time and thus degraded S/N, would effectively eliminate this degenerate solution. Single observation with a HabEx-like telescope would yield high-precision constraints on the gas abundances and cloud properties, without the degenerate scenario. These results are also generally applicable to high-contrast spectroscopy with a coronagraph with a similar wavelength coverage and S/N, and can help design the wavelength bandwidth and the observation plan of exoplanet direct imaging experiments in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا