ﻻ يوجد ملخص باللغة العربية
Cooperative events requiring anomalously large fluctuations are a defining characteristic for the onset of glassy relaxation across many materials. The importance of such intermittent events has been noted in systems as diverse as superconductors, metallic glasses, gels, colloids, and granular piles. Here, we show that prohibiting the attainment of new record-high energy fluctuations -- by explicitly imposing a ``lid on the fluctuation spectrum -- impedes further relaxation in the glassy phase. This lid allows us to directly measure the impact of record events on the evolving system in extensive simulations of aging in such vastly distinct glass formers as spin glasses and tapped granular piles. Interpreting our results in terms of a dynamics of records succeeds in explaining the ubiquity of both, the logarithmic decay of the energy and the memory effects encoded in the scaling of two-time correlation functions of aging systems.
Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals in several of their macroscopic observables: intermediate scattering function, dielectric relaxation modulus, time-elastic modulus etc. This behavi
Whereas the first part of this paper dealt with the relaxation in the beta-regime, this part investigates the final (alpha) relaxation of a simulated polymer melt consisting of short non-entangled chains above the critical temperature Tc of mode-coup
We report results of molecular-dynamics simulations of a model polymer melt consisting of short non-entangled chains in the supercooled state above the critical temperature of mode-coupling theory (MCT). To analyse the dynamics of the system we compu
A high-resolution calorimetric spectroscopy study has been performed on pure glycerol and colloidal dispersions of an aerosil in glycerol covering a wide range of temperatures from 300 K to 380 K, deep in the liquid phase of glycerol. The colloidal g
Physical properties of out of equilibrium soft materials depend on time as well as deformation history. In this work we propose to transform this major shortcoming into gain by applying controlled deformation field to tailor the rheological propertie