ﻻ يوجد ملخص باللغة العربية
We report results of molecular-dynamics simulations of a model polymer melt consisting of short non-entangled chains in the supercooled state above the critical temperature of mode-coupling theory (MCT). To analyse the dynamics of the system we computed the incoherent, collective chain and melt intermediate scattering functions as well as the Van Hove correlation functions. We find good evidence for the space-time factorization theorem of MCT. From the critical amplitudes we could derive typical length scales of the beta-dyamics. In an extensive quantitative analysis the leading order description of MCT was found to be accurate in the central beta-regime. Higher order corrections extend the validity of the MCT approximation to a greater time window. Indications of polymer specific effects on the length scale of the chains radius of gyration are visible in the beta-coefficients.
Whereas the first part of this paper dealt with the relaxation in the beta-regime, this part investigates the final (alpha) relaxation of a simulated polymer melt consisting of short non-entangled chains above the critical temperature Tc of mode-coup
We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, th
Significant progress was made in recent years in the understanding of the proton spin kinetics in polymer melts. Generally, the proton spin kinetics is determined by intramolecular and intermolecular magnetic dipole-dipole contributions of proton spi
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, $G(t)$, into the plateau regime
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization (ECNLE theory) of activated dynamics in bulk spherical particle liquids to address the influence of random particle pin