In this paper, we prove some value distribution results which lead to some normality criteria for a family of analytic functions. These results improve some recent results.
Let $f$ be a transcendental meromorphic function, defined in the complex plane $mathbb{C}$. In this paper, we give a quantitative estimations of the characteristic function $T(r,f)$ in terms of the counting function of a homogeneous differential poly
nomial generated by $f$. Our result improves and generalizes some recent results.
Let $f$ be a transcendental meromorphic function defined in the complex plane $mathbb{C}$. We consider the value distribution of the differential polynomial $f^{q_{0}}(f^{(k)})^{q_{k}}$, where $q_{0}(geq 2), q_{k}(geq 1)$ are $k(geq1)$ non-negative i
ntegers. We obtain a quantitative estimation of the characteristic function $T(r, f)$ in terms of $overline{N}left(r,frac{1}{f^{q_{_{0}}}(f^{(k)})^{q_{k}}-1}right)$.par Our result generalizes the results obtained by Xu et al. (Math. Inequal. Appl., 14, 93-100, 2011) and Karmakar and Sahoo (Results Math., 73, 2018) for a particular class of transcendental meromorphic functions.
In this article, we prove some normality criteria for a family of meromorphic functions having zeros with some multiplicity. Our main result involves sharing of a holomorphic function by certain differential polynomials. Our results generalize some o
f the results of Fang and Zalcman and Chen et al to a great extent.
In [Israel J. Math, 2014], Grahl and Nevo obtained a significant improvement for the well-known normality criterion of Montel. They proved that for a family of meromorphic functions $mathcal F$ in a domain $Dsubset mathbb C,$ and for a positive const
ant $epsilon$, if for each $fin mathcal F$ there exist meromorphic functions $a_f,b_f,c_f$ such that $f$ omits $a_f,b_f,c_f$ in $D$ and $$min{rho(a_f(z),b_f(z)), rho(b_f(z),c_f(z)), rho(c_f(z),a_f(z))}geq epsilon,$$ for all $zin D$, then $mathcal F$ is normal in $D$. Here, $rho$ is the spherical metric in $widehat{mathbb C}$. In this paper, we establish the high-dimension
Let $k$ be an arbitrary field. In this note, we show that if a sequence of relatively prime positive integers ${bf a}=(a_1,a_2,a_3,a_4)$ defines a Gorenstein non complete intersection monomial curve ${mathcal C}({bf a})$ in ${mathbb A}_k^4$, then the
re exist two vectors ${bf u}$ and ${bf v}$ such that ${mathcal C}({bf a}+t{bf u})$ and ${mathcal C}({bf a}+t{bf v})$ are also Gorenstein non complete intersection affine monomial curves for almost all $tgeq 0$.
Sudip Saha
,Bikash Chakraborty
.
(2020)
.
"A Note on the value distribution of a differential monomial and some normality criteria"
.
Bikash Chakraborty
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا