ﻻ يوجد ملخص باللغة العربية
Let $k$ be an arbitrary field. In this note, we show that if a sequence of relatively prime positive integers ${bf a}=(a_1,a_2,a_3,a_4)$ defines a Gorenstein non complete intersection monomial curve ${mathcal C}({bf a})$ in ${mathbb A}_k^4$, then there exist two vectors ${bf u}$ and ${bf v}$ such that ${mathcal C}({bf a}+t{bf u})$ and ${mathcal C}({bf a}+t{bf v})$ are also Gorenstein non complete intersection affine monomial curves for almost all $tgeq 0$.
We study a monomial derivation $d$ proposed by J. Moulin Ollagnier and A. Nowicki in the polynomial ring of four variables, and prove that $d$ has no Darboux polynomials if and only if $d$ has a trivial field of constants.
Let $mathcal{A}={{bf a}_1,ldots,{bf a}_n}subsetBbb{N}^m$. We give an algebraic characterization of the universal Markov basis of the toric ideal $I_{mathcal{A}}$. We show that the Markov complexity of $mathcal{A}={n_1,n_2,n_3}$ is equal to two if $I_
Computing the complexity of Markov bases is an extremely challenging problem; no formula is known in general and there are very few classes of toric ideals for which the Markov complexity has been computed. A monomial curve $C$ in $mathbb{A}^3$ has M
Let $k$ be a field and $G subseteq Gl_n(k)$ be a finite group with $|G|^{-1} in k$. Let $G$ act linearly on $A = k[X_1, ldots, X_n]$ and let $A^G$ be the ring of invariants. Suppose there does not exist any non-trivial one-dimensional representation
We show that a non-trivial fiber product $Stimes_k T$ of commutative noetherian local rings $S,T$ with a common residue field $k$ is Gorenstein if and only if it is a hypersurface of dimension 1. In this case, both $S$ and $T$ are regular rings of di