ﻻ يوجد ملخص باللغة العربية
Mermin-Wagner-Coleman theorem predicts no long-range magnetic order at finite temperature in the two-dimensional (2D) isotropic systems, but a quasi-long-range order with a divergent correlation length at the Kosterlitz-Thouless (KT) transition for planar magnets. As a representative of two-dimensional planar antiferromagnets, single-layer CoPS3 carries the promise of monolayer antiferromagnetic platforms for the ultimately thin spintronics. Here, with the aid of magnetostriction which is sensitive to the local magnetic order, we observe the signatured phonon mode splitting of below TKT in monolayer CoPS3, revealing the presence of quasi-long-range ordering in XY-type antiferromagnet. Moreover, the ratio (J/J) between the interlayer and intralayer interactions, which characterizes the 2D behaviors, is evaluated to be around 0.03 for the first time. Our results provide an efficient method to detect the quasi-long-range antiferromagnetic ordering in the two-dimensional magnets down to monolayer limit.
We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a f
We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na$_2$IrO$_3$, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir
How a certain ground state of complex physical systems emerges, especially in two-dimensional materials, is a fundamental question in condensed-matter physics. A particularly interesting case is systems belonging to the class of XY Hamiltonian where
While it is often assumed that the orbital transport is short-ranged due to strong crystal field potential and orbital quenching, we show that orbital propagation can be remarkably long-ranged in ferromagnets. In contrast to spin transport, which exh
In the topological semimetals, electrons in the vicinity of the Weyl or Dirac nodes behave like massless relativistic fermions that are of interest both for basic research and future electronic applications. Thus far, a detection of these Dirac or We