ﻻ يوجد ملخص باللغة العربية
We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na$_2$IrO$_3$, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L$_3$-edge, we find 3D long range antiferromagnetic order below T$_N$=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel zig-zag structure.
The magnetic structure of honeycomb iridate Na$_2$IrO$_3$ is of paramount importance to its exotic properties. The magnetic order is established experimentally to be zigzag antiferromagnetic. However, the previous assignment of ordered moment to the
The honeycomb lattice iridate Na$_2$IrO$_3$ shows frustrated magnetism and can potentially display Kitaev-like exchange interactions. Recently, it was shown that the electronic properties of the surface of crystalline Na$_2$IrO$_3$ can be tuned by Ar
Kitaevs honeycomb spin-liquid model and its proposed realization in materials such as $alpha$-RuCl$_3$, Li$_2$IrO$_3$ and Na$_2$IrO$_3$ continue to present open questions about how the dynamics of a spin-liquid are modified in the presence of non-Kit
The Kitaev model of spin-1/2 on a honeycomb lattice supports degenerate topological ground states and may be useful in topological quantum computation. Na$_{2}$IrO$_{3}$ with honeycomb lattice of Ir ions have been extensively studied as candidates fo
Spin orbit assisted Mott insulators such as sodium iridate (Na$_2$IrO$_3$) have been an important subject of study in the recent years. In these materials, the interplay of electronic correlations, spin-orbit coupling, crystal field effects and a hon