ﻻ يوجد ملخص باللغة العربية
This paper is devoted to proposing a general weighted low-rank recovery model and designs a fast SVD-free computational scheme to solve it. First, our generic weighted low-rank recovery model unifies several existing approaches in the literature.~Moreover, our model readily extends to the non-convex setting. Algorithm-wise, most first-order proximal algorithms in the literature for low-rank recoveries require computing singular value decomposition (SVD). As SVD does not scale properly with the dimension of the matrices, these algorithms becomes slower when the problem size becomes larger. By incorporating the variational formulation of the nuclear norm into the sub-problem of proximal gradient descent, we avoid to compute SVD which results in significant speed-up. Moreover, our algorithm preserves the {em rank identification property} of nuclear norm [33] which further allows us to design a rank continuation scheme that asymptotically achieves the minimal iteration complexity. Numerical experiments on both toy example and real-world problems including structure from motion (SfM) and photometric stereo, background estimation and matrix completion, demonstrate the superiority of our proposed algorithm.
The problem of recovering a low-rank matrix from the linear constraints, known as affine matrix rank minimization problem, has been attracting extensive attention in recent years. In general, affine matrix rank minimization problem is a NP-hard. In o
Fourier domain structured low-rank matrix priors are emerging as powerful alternatives to traditional image recovery methods such as total variation and wavelet regularization. These priors specify that a convolutional structured matrix, i.e., Toepli
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton
The low-rank matrix completion problem can be solved by Riemannian optimization on a fixed-rank manifold. However, a drawback of the known approaches is that the rank parameter has to be fixed a priori. In this paper, we consider the optimization pro
Low rank matrix recovery is the focus of many applications, but it is a NP-hard problem. A popular way to deal with this problem is to solve its convex relaxation, the nuclear norm regularized minimization problem (NRM), which includes LASSO as a spe