ﻻ يوجد ملخص باللغة العربية
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton linearization. On the theoretical front, we derive recovery guarantees for GNMR in both the matrix sensing and matrix completion settings. A key property of GNMR is that it implicitly keeps the factor matrices approximately balanced throughout its iterations. On the empirical front, we show that for matrix completion with uniform sampling, GNMR performs better than several popular methods, especially when given very few observations close to the information limit.
We exploit the versatile framework of Riemannian optimization on quotient manifolds to develop R3MC, a nonlinear conjugate-gradient method for low-rank matrix completion. The underlying search space of fixed-rank matrices is endowed with a novel Riem
The problem of recovering a low-rank matrix from the linear constraints, known as affine matrix rank minimization problem, has been attracting extensive attention in recent years. In general, affine matrix rank minimization problem is a NP-hard. In o
Low rank matrix recovery is the focus of many applications, but it is a NP-hard problem. A popular way to deal with this problem is to solve its convex relaxation, the nuclear norm regularized minimization problem (NRM), which includes LASSO as a spe
We prove that it is possible for nonconvex low-rank matrix recovery to contain no spurious local minima when the rank of the unknown ground truth $r^{star}<r$ is strictly less than the search rank $r$, and yet for the claim to be false when $r^{star}
Fourier domain structured low-rank matrix priors are emerging as powerful alternatives to traditional image recovery methods such as total variation and wavelet regularization. These priors specify that a convolutional structured matrix, i.e., Toepli