ترغب بنشر مسار تعليمي؟ اضغط هنا

DEVI: Open-source Human-Robot Interface for Interactive Receptionist Systems

178   0   0.0 ( 0 )
 نشر من قبل Ramesha Karunasena
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humanoid robots that act as human-robot interfaces equipped with social skills can assist people in many of their daily activities. Receptionist robots are one such application where social skills and appearance are of utmost importance. Many existing robot receptionist systems suffer from high cost and they do not disclose internal architectures for further development for robot researchers. Moreover, there does not exist customizable open-source robot receptionist frameworks to be deployed for any given application. In this paper we present an open-source robot receptionist intelligence core -- DEVI(means lady in Sinhala), that provides researchers with ease of creating customized robot receptionists according to the requirements (cost, external appearance, and required processing power). Moreover, this paper also presents details on a prototype implementation of a physical robot using the DEVI system. The robot can give directional guidance with physical gestures, answer basic queries using a speech recognition and synthesis system, recognize and greet known people using face recognition and register new people in its database, using a self-learning neural network. Experiments conducted with DEVI show the effectiveness of the proposed system.



قيم البحث

اقرأ أيضاً

This paper presents a user-centered physical interface for collaborative mobile manipulators in industrial manufacturing and logistics applications. The proposed work builds on our earlier MOCA-MAN interface, through which a mobile manipulator could be physically coupled to the operators to assist them in performing daily activities. The new interface instead presents the following additions: i) A simplistic, industrial-like design that allows the worker to couple/decouple easily and to operate mobile manipulators locally; ii) Enhanced loco-manipulation capabilities that do not compromise the worker mobility. Besides, an experimental evaluation with six human subjects is carried out to analyze the enhanced locomotion and flexibility of the proposed interface in terms of mobility constraint, usability, and physical load reduction.
We present situated live programming for human-robot collaboration, an approach that enables users with limited programming experience to program collaborative applications for human-robot interaction. Allowing end users, such as shop floor workers, to program collaborative robots themselves would make it easy to retask robots from one process to another, facilitating their adoption by small and medium enterprises. Our approach builds on the paradigm of trigger-action programming (TAP) by allowing end users to create rich interactions through simple trigger-action pairings. It enables end users to iteratively create, edit, and refine a reactive robot program while executing partial programs. This live programming approach enables the user to utilize the task space and objects by incrementally specifying situated trigger-action pairs, substantially lowering the barrier to entry for programming or reprogramming robots for collaboration. We instantiate situated live programming in an authoring system where users can create trigger-action programs by annotating an augmented video feed from the robots perspective and assign robot actions to trigger conditions. We evaluated this system in a study where participants (n = 10) developed robot programs for solving collaborative light-manufacturing tasks. Results showed that users with little programming experience were able to program HRC tasks in an interactive fashion and our situated live programming approach further supported individualized strategies and workflows. We conclude by discussing opportunities and limitations of the proposed approach, our system implementation, and our study and discuss a roadmap for expanding this approach to a broader range of tasks and applications.
Human-robot teaming is one of the most important applications of artificial intelligence in the fast-growing field of robotics. For effective teaming, a robot must not only maintain a behavioral model of its human teammates to project the team status , but also be aware that its human teammates expectation of itself. Being aware of the human teammates expectation leads to robot behaviors that better align with human expectation, thus facilitating more efficient and potentially safer teams. Our work addresses the problem of human-robot cooperation with the consideration of such teammate models in sequential domains by leveraging the concept of plan explicability. In plan explicability, however, the human is considered solely as an observer. In this paper, we extend plan explicability to consider interactive settings where human and robot behaviors can influence each other. We term this new measure as Interactive Plan Explicability. We compare the joint plan generated with the consideration of this measure using the fast forward planner (FF) with the plan created by FF without such consideration, as well as the plan created with actual human subjects. Results indicate that the explicability score of plans generated by our algorithm is comparable to the human plan, and better than the plan created by FF without considering the measure, implying that the plans created by our algorithms align better with expected joint plans of the human during execution. This can lead to more efficient collaboration in practice.
In this paper, we propose the Interactive Text2Pickup (IT2P) network for human-robot collaboration which enables an effective interaction with a human user despite the ambiguity in users commands. We focus on the task where a robot is expected to pic k up an object instructed by a human, and to interact with the human when the given instruction is vague. The proposed network understands the command from the human user and estimates the position of the desired object first. To handle the inherent ambiguity in human language commands, a suitable question which can resolve the ambiguity is generated. The users answer to the question is combined with the initial command and given back to the network, resulting in more accurate estimation. The experiment results show that given unambiguous commands, the proposed method can estimate the position of the requested object with an accuracy of 98.49% based on our test dataset. Given ambiguous language commands, we show that the accuracy of the pick up task increases by 1.94 times after incorporating the information obtained from the interaction.
143 - Mohit Shridhar , David Hsu 2018
This paper presents INGRESS, a robot system that follows human natural language instructions to pick and place everyday objects. The core issue here is the grounding of referring expressions: infer objects and their relationships from input images an d language expressions. INGRESS allows for unconstrained object categories and unconstrained language expressions. Further, it asks questions to disambiguate referring expressions interactively. To achieve these, we take the approach of grounding by generation and propose a two-stage neural network model for grounding. The first stage uses a neural network to generate visual descriptions of objects, compares them with the input language expression, and identifies a set of candidate objects. The second stage uses another neural network to examine all pairwise relations between the candidates and infers the most likely referred object. The same neural networks are used for both grounding and question generation for disambiguation. Experiments show that INGRESS outperformed a state-of-the-art method on the RefCOCO dataset and in robot experiments with humans.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا