ﻻ يوجد ملخص باللغة العربية
We consider a federated learning framework in which a parameter server (PS) trains a global model by using $n$ clients without actually storing the client data centrally at a cloud server. Focusing on a setting where the client datasets are fast changing and highly temporal in nature, we investigate the timeliness of model updates and propose a novel timely communication scheme. Under the proposed scheme, at each iteration, the PS waits for $m$ available clients and sends them the current model. Then, the PS uses the local updates of the earliest $k$ out of $m$ clients to update the global model at each iteration. We find the average age of information experienced by each client and numerically characterize the age-optimal $m$ and $k$ values for a given $n$. Our results indicate that, in addition to ensuring timeliness, the proposed communication scheme results in significantly smaller average iteration times compared to random client selection without hurting the convergence of the global learning task.
Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called stragglers, and communication overheads.
Over-the-air computation (OAC) is a promising technique to realize fast model aggregation in the uplink of federated edge learning. OAC, however, hinges on accurate channel-gain precoding and strict synchronization among the edge devices, which are c
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distri
We study collaborative machine learning systems where a massive dataset is distributed across independent workers which compute their local gradient estimates based on their own datasets. Workers send their estimates through a multipath fading multip
Petabytes of data are generated each day by emerging Internet of Things (IoT), but only few of them can be finally collected and used for Machine Learning (ML) purposes due to the apprehension of data & privacy leakage, which seriously retarding MLs