ﻻ يوجد ملخص باللغة العربية
We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences which defines the non-commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these include their explicit expansion in terms of normalized monomials and a non-commutative elliptic Euler--Cassini identity.
Given two variables $s$ and $t$, the associated sequence of Lucas polynomials is defined inductively by ${0}=0$, ${1}=1$, and ${n}=s{n-1}+t{n-2}$ for $nge2$. An integer (e.g., a Catalan number) defined by an expression of the form $prod_i n_i/prod_j
We prove an infinite family of lacunary recurrences for the Lucas numbers using combinatorial means.
For an integer $qge2$, a $q$-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of~$q$. In this article, $q$-recursive sequences are studied and the asymptotic behavior of their summatory functions is
Given a set of integers containing no 3-term arithmetic progressions, one constructs a Stanley sequence by choosing integers greedily without forming such a progression. Independent Stanley sequences are a well-structured class of Stanley sequences w
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_