ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_1+ ... + n_l)/ord (g)$ over all $g in G$ with $ord (g) = n$. In this paper we prove that a sequence $S$ over $G$ of length $|S| = n$ having an element with multiplicity at least $frac{n}{2}$ has a subsequence $T$ with $ind (T) = 1$, and if the group order $n$ is a prime, then the assumption on the multiplicity can be relaxed to $frac{n-2}{10}$. On the other hand, if $n=4k+2$ with $k ge 5$, we provide an example of a sequence $S$ having length $|S| > n$ and an element with multiplicity $frac{n}{2}-1$ which has no subsequence $T$ with $ind (T) = 1$. This disproves a conjecture given twenty years ago by Lemke and Kleitman.
Let $mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $mathcal{S}$ is called {sl idempotent-sum free} provided that no idempotent of $mathcal{S}$ can
Let $p > 155$ be a prime and let $G$ be a cyclic group of order $p$. Let $S$ be a minimal zero-sum sequence with elements over $G$, i.e., the sum of elements in $S$ is zero, but no proper nontrivial subsequence of $S$ has sum zero. We call $S$ is uns
Let $G$ be a finite cyclic group. Every sequence $S$ of length $l$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1
Let $G$ be a finite cyclic group. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1+cdots+n_l)/or
A Cayley graph is said to be an NNN-graph if it is both normal and non-normal for isomorphic regular groups, and a group has the NNN-property if there exists an NNN-graph for it. In this paper we investigate the NNN-property of cyclic groups, and show that cyclic groups do not have the NNN-property.