ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Monte Carlo study of few- and many-body Bose systems in one and two dimensions

64   0   0.0 ( 0 )
 نشر من قبل Grecia Guijarro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Guijarro




اسأل ChatGPT حول البحث

In this Thesis, we report a detailed study of the ground-state properties of a set of quantum few- and many-body systems in one and two dimensions with different types of interactions by using Quantum Monte Carlo methods. Nevertheless, the main focus of this work is the study of the ground-state properties of an ultracold Bose system with dipole-dipole interaction between the particles. We consider the cases where the bosons are confined to a bilayer and multilayer geometries, that consist of equally spaced two-dimensional layers. These layers can be experimentally realized by imposing tight confinement in one direction. We specifically address the study of new quantum phases, their properties, and transitions between them. One expects these systems to have a rich collection of few- and many-body phases because the dipole-dipole interaction is anisotropic and quasi long-range.

قيم البحث

اقرأ أيضاً

Entanglement of spatial bipartitions, used to explore lattice models in condensed matter physics, may be insufficient to fully describe itinerant quantum many-body systems in the continuum. We introduce a procedure to measure the Renyi entanglement e ntropies on a particle bipartition, with general applicability to continuum Hamiltonians via path integral Monte Carlo methods. Via direct simulations of interacting bosons in one spatial dimension, we confirm a logarithmic scaling of the single-particle entanglement entropy with the number of particles in the system. The coefficient of this logarithmic scaling increases with interaction strength, saturating to unity in the strongly interacting limit. Additionally, we show that the single-particle entanglement entropy is bounded by the condensate fraction, suggesting a practical route towards its measurement in future experiments.
We study a harmonically confined Bose-Bose mixture using quantum Monte Carlo methods. Our results for the density profiles are systematically compared with mean-field predictions derived through the Gross-Pitaevskii equation in the same conditions. T he phase space as a function of the interaction strengths and the relation between masses is quite rich. The miscibility criterion for the homogeneous system applies rather well to the system, with some discrepancies close to the critical line for separation. We observe significant differences between the mean-field results and the Monte Carlo ones, that magnify when the asymmetry between masses increases. In the analyzed interaction regime, we observe universality of our results which extend beyond the applicability regime for the Gross-Pitaevskii equation.
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclas sical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled and compare with the Luttinger-liquid theory.
We study a resonant Bose-Fermi mixture at zero temperature by using the fixed-node diffusion Monte Carlo method. We explore the system from weak to strong boson-fermion interaction, for different concentrations of the bosons relative to the fermion c omponent. We focus on the case where the boson density $n_B$ is smaller than the fermion density $n_F$, for which a first-order quantum phase transition is found from a state with condensed bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and unpaired fermions. We obtain the equation of state and the phase diagram, and we find that the region of phase separation shrinks to zero for vanishing $n_B$.
71 - A. S. Dehkharghani 2018
In this thesis, I go through the well-known solutions to the one and two-particle systems trapped in a quantum harmonic oscillator and then continue to the three, four and many-body quantum systems. This is done by developing new analytical models an d numerical methods both for the few- and many-body systems. One-dimensional systems are very interesting in a sense that particles aligned on a line can only change seats by going through each other. This property can be exploited in the strongly interacting regime, where particles are forced to sit in a specific configuration, which can be easily manipulated. The knowledge of how and where the particles are can be exploited in future quantum applications. In short, the thesis is about establishing a solid knowledge about everything that one needs to know about the one-dimensional few- and many-component interacting quantum systems trapped in harmonic oscillator potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا