ﻻ يوجد ملخص باللغة العربية
Entanglement of spatial bipartitions, used to explore lattice models in condensed matter physics, may be insufficient to fully describe itinerant quantum many-body systems in the continuum. We introduce a procedure to measure the Renyi entanglement entropies on a particle bipartition, with general applicability to continuum Hamiltonians via path integral Monte Carlo methods. Via direct simulations of interacting bosons in one spatial dimension, we confirm a logarithmic scaling of the single-particle entanglement entropy with the number of particles in the system. The coefficient of this logarithmic scaling increases with interaction strength, saturating to unity in the strongly interacting limit. Additionally, we show that the single-particle entanglement entropy is bounded by the condensate fraction, suggesting a practical route towards its measurement in future experiments.
In this Thesis, we report a detailed study of the ground-state properties of a set of quantum few- and many-body systems in one and two dimensions with different types of interactions by using Quantum Monte Carlo methods. Nevertheless, the main focus
The single-particle density is the most basic quantity that can be calculated from a given many-body wave function. It provides the probability to find a particle at a given position when the average over many realizations of an experiment is taken.
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclas
The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying pa
An ab-initio method for determining the dynamical structure function of an interacting many--body quantum system has been devised by combining a generalized integral transform method with Quantum Monte Carlo methods. As a first application, the coher