ﻻ يوجد ملخص باللغة العربية
While CNN-based models have made remarkable progress on human pose estimation, what spatial dependencies they capture to localize keypoints remains unclear. In this work, we propose a model called textbf{TransPose}, which introduces Transformer for human pose estimation. The attention layers built in Transformer enable our model to capture long-range relationships efficiently and also can reveal what dependencies the predicted keypoints rely on. To predict keypoint heatmaps, the last attention layer acts as an aggregator, which collects contributions from image clues and forms maximum positions of keypoints. Such a heatmap-based localization approach via Transformer conforms to the principle of Activation Maximization~cite{erhan2009visualizing}. And the revealed dependencies are image-specific and fine-grained, which also can provide evidence of how the model handles special cases, e.g., occlusion. The experiments show that TransPose achieves 75.8 AP and 75.0 AP on COCO validation and test-dev sets, while being more lightweight and faster than mainstream CNN architectures. The TransPose model also transfers very well on MPII benchmark, achieving superior performance on the test set when fine-tuned with small training costs. Code and pre-trained models are publicly availablefootnote{url{https://github.com/yangsenius/TransPose}}.
Knowledge about the locations of keypoints of an object in an image can assist in fine-grained classification and identification tasks, particularly for the case of objects that exhibit large variations in poses that greatly influence their visual ap
We introduce Activity Graph Transformer, an end-to-end learnable model for temporal action localization, that receives a video as input and directly predicts a set of action instances that appear in the video. Detecting and localizing action instance
In this work, we address the problem of cross-view geo-localization, which estimates the geospatial location of a street view image by matching it with a database of geo-tagged aerial images. The cross-view matching task is extremely challenging due
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving. In case of monocular vision, successful methods have been mainly based on two ingredients: (i) a network generating 2D region
In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar ob