ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled cavity-waveguide system based on topological corner state and edge state

81   0   0.0 ( 0 )
 نشر من قبل Jianjun Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological corner state (TCS) and topological edge state (TES) have provided new approaches to control the propagation of light. The construction of topological coupled cavity-waveguide system (TCCWS) based on TCS and TES is worth looking forward to, due to its research prospects in realizing high-performance micro-nano integrated photonic devices. In this Letter, TCCWS is proposed in two-dimensional (2D) photonic crystal (PC), which possesses strong optical localization, high quality factor and excellent robustness compared with the conventional coupled cavity-waveguide system (CCCWS). This work will provide the possibility to design high-performance logic gates, lasers, filters and other micro-nano integrated photonics devices and expand their applications.

قيم البحث

اقرأ أيضاً

In comparison with conventional lasers, topological lasers are more robust and can be immune to disorder or de-fects if lasing occurs in topologically protected states. Previously reported topological lasers were almost exclu-sively based on the firs t-order photonic topological insulators. Here, we show that lasing can be achieved in the zero-dimensional corner state in a second-order photonic topological insulator, which is based on Kagome wave-guide array with a rhombic configuration. If gain is present in the corner of the structure, where topological corner state resides, stable lasing in this state is achieved, with lowest possible threshold, in the presence of uniform loss-es and two-photon absorption. When gain acts in other corners of the structure, lasing may occur in edge or bulk states, but it requires substantially larger thresholds and transition to stable lasing occurs over much larger propa-gation distances, sometimes due to instabilities, which are absent for lasing in corner states. We find that increasing two-photon absorption generally plays strong stabilizing action for nonlinear lasing states. The transition to stable lasing stimulated by noisy inputs is illustrated. Our work demonstrates the realistic setting for corner state laser based on higher-order topological insulator realised with waveguide arrays.
The topological lasers, which are immune to imperfections and disorders, have been recently demonstrated based on many kinds of robust edge states, being mostly at microscale. The realization of 2D on-chip topological nanolasers, having the small foo tprint, low threshold and high energy efficiency, is still to be explored. Here, we report on the first experimental demonstration of the topological nanolaser with high performance in 2D photonic crystal slab. Based on the generalized 2D Su-Schrieffer-Heeger model, a topological nanocavity is formed with the help of the Wannier-type 0D corner state. Laser behaviors with low threshold about 1 $mu W$ and high spontaneous emission coupling factor of 0.25 are observed with quantum dots as the active material. Such performance is much better than that of topological edge lasers and comparable to conventional photonic crystal nanolasers. Our experimental demonstration of the low-threshold topological nanolaser will be of great significance to the development of topological nanophotonic circuitry for manipulation of photons in classical and quantum regimes.
Topological photonics provides a new paradigm in studying cavity quantum electrodynamics with robustness to disorder. In this work, we demonstrate the coupling between single quantum dots and the second-order topological corner state. Based on the se cond-order topological corner state, a topological photonic crystal cavity is designed and fabricated into GaAs slabs with quantum dots embedded. The coexistence of corner state and edge state with high quality factor close to 2000 is observed. The enhancement of photoluminescence intensity and emission rate are both observed when the quantum dot is on resonance with the corner state. This result enables the application of topology into cavity quantum electrodynamics, offering an approach to topological devices for quantum information processing.
153 - Xin Xie , Jianchen Dang , Sai Yan 2021
The second-order topological photonic crystal with 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and rob ustness of topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for the further investigations and applications of the topological corner state, such as the investigation of strong coupling regime and the development of optical devices for topological nanophotonic circuitry.
86 - Xin Xie , Sai Yan , Jianchen Dang 2021
Slow light in topological valley photonic crystal structures offers new possibilities to enhance light-matter interaction. We report a topological cavity based on slow light topological edge mode for broadband Purcell enhancement. The topological edg e modes with large group indices over 100 can be realized with a bearded interface between two topologically distinct valley photonic crystals, featuring the greatly enhanced Purcell factor because of the increased local density of states. In the slow light regime, the topological cavity supports much more cavity modes with higher quality factor than that in the fast light regime, which is both demonstrated theoretically and experimentally. We demonstrate the cavity enables the broadband Purcell enhancement together with substantial Purcell factor, benefiting from dense cavity modes with high quality factor in a wide spectral range. It has great benefit to the realization of high-efficiency quantum-dot-based single-photon sources and entangled-photon sources with less restriction on spectral match. Such topological cavity could serve as a significant building block toward the development of photonic integrated circuits with embedded quantum emitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا