ترغب بنشر مسار تعليمي؟ اضغط هنا

CFTs in rotating black hole backgrounds

259   0   0.0 ( 0 )
 نشر من قبل Saran Tunyasuvunakool
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation value of the stress tensor of the dual CFT using holographic renormalisation and show that it is stationary and regular on both the future and the past event horizons. The energy density of the CFT is found to be negative everywhere in our domain and we argue that this can be understood as a vacuum polarisation effect. We construct the solutions by numerically solving the elliptic Einstein--DeTurck equation for stationary Lorentzian spacetimes with Killing horizons.



قيم البحث

اقرأ أيضاً

Exact solutions describing rotating black holes can offer important tests for alternative theories of gravity, motivated by the dark energy and dark matter problems. We present an analytic rotating black hole solution for a class of vector-tensor the ories of modified gravity, valid for arbitrary values of the rotation parameter. The new configuration is characterised by parametrically large deviations from the Kerr-Newman geometry, controlled by non-minimal couplings between vectors and gravity. It has an oblate horizon in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger ergosphere than black holes in General Relativity (GR) with the same asymptotic properties. We analytically investigate the features of the innermost stable circular orbits for massive objects on the equatorial plane, and show that stable orbits lie further away from the black hole horizon with respect to rotating black holes in GR. We also comment on possible applications of our findings for the extraction of rotational energy from the black hole.
In the tunneling framework of Hawking radiation, charged massive particles tunneling in charged non-rotating TeV-Scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentu m through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged non-rotating micro black hole by taking into account the full implications of energy and charge conservation as well as the back- scattered radiation.
88 - Shingo Takeuchi 2021
One of the problems in the current asymptotic symmetry would be to extend the black hole to the rotating one. Therefore, in this paper, we obtain a four-dimensional asymptotically flat rotating black hole solution including the supertraslation corrections.
143 - Sukanta Bose 1999
We explore the (non)-universality of Martinezs conjecture, originally proposed for Kerr black holes, within and beyond general relativity. The conjecture states that the Brown-York quasilocal energy at the outer horizon of such a black hole reduces t o twice its irreducible mass, or equivalently, to sqrt{A} /(2sqrt{pi}), where `A is its area. We first consider the charged Kerr black hole. For such a spacetime, we calculate the quasilocal energy within a two-surface of constant Boyer-Lindquist radius embedded in a constant stationary-time slice. Keeping with Martinezs conjecture, at the outer horizon this energy equals the irreducible mass. The energy is positive and monotonically decreases to the ADM mass as the boundary-surface radius diverges. Next we perform an analogous calculation for the quasilocal energy for the Kerr-Sen spacetime, which corresponds to four-dimensional rotating charged black hole solutions in heterotic string theory. The behavior of this energy as a function of the boundary-surface radius is similar to the charged Kerr case. However, we show that in this case it does not approach the expression conjectured by Martinez at the horizon.
We use the quantum null energy condition in strongly coupled two-dimensional field theories (QNEC2) as diagnostic tool to study a variety of phase structures, including crossover, second and first order phase transitions. We find a universal QNEC2 co nstraint for first order phase transitions with kinked entanglement entropy and discuss in general the relation between the QNEC2-inequality and monotonicity of the Casini-Huerta c-function. We then focus on a specific example, the holographic dual of which is modelled by three-dimensional Einstein gravity plus a massive scalar field with one free parameter in the self-interaction potential. We study translation invariant stationary states dual to domain walls and black branes. Depending on the value of the free parameter we find crossover, second and first order phase transitions between such states, and the c-function either flows to zero or to a finite value in the infrared. Strikingly, evaluating QNEC2 for ground state solutions allows to predict the existence of phase transitions at finite temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا