ﻻ يوجد ملخص باللغة العربية
We identify a valley-polarized Chern insulator in the van der Waals heterostructure, Pt$_{2}$HgSe$_{3}$/CrI$_3$, for potential applications with interplay between electric, magnetic, optical, and mechanical effects. The interlayer proximity magnetic coupling nearly closes the band gap of Pt$_{2}$HgSe$_{3}$ and the strong intra-layer spin-orbit coupling further lifts the valley degeneracy by over 100 meV leading to positive and negative band gaps at opposite valleys. In the valley with negative gap, the interfacial Rashba spin-orbit coupling opens a topological band gap of 17.8 meV, which is enlarged to 30.8 meV by adding an $h$-BN layer. We find large orbital magnetization in Pt$_{2}$HgSe$_{3}$ layer that is much larger than spin, which can induce measurable optical Kerr effect. The valley polarization and Chern number are coupled to the magnetic order of the nearest neighboring CrI$_3$ layer, which is switchable by electric, magnetic, and mechanical means in experiments. The presence of $h$-BN protects the topological phase allowing the construction of superlattices with valley, spin, and layer degrees of freedoms.
We demonstrate a new method of designing 2D functional magnetic topological heterostructure (HS) by exploiting the vdw heterostructure (vdw-HS) through combining 2D magnet CrI$_3$ and 2D materials (Ge/Sb) to realize new 2D topological system with non
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradic
Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional (2D) monolayer ferromagnetic insulator CrI$_{3}$ was successfully synthesized in experime
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, layered structures provide a new platform for
Early processing of visual information takes place in the human retina. Mimicking neurobiological structures and functionalities of the retina provide a promising pathway to achieving vision sensor with highly efficient image processing. Here, we dem