ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological superconductivity in a van der Waals heterostructure

390   0   0.0 ( 0 )
 نشر من قبل Peter Liljeroth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradictory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.


قيم البحث

اقرأ أيضاً

The fabrication of van der Waals heterostructures, artificial materials assembled by individually stacking atomically thin (2D) materials, is one of the most promising directions in 2D materials research. Until now, the most widespread approach to st ack 2D layers relies on deterministic placement methods which are cumbersome when fabricating multilayered stacks. Moreover, they tend to suffer from poor control over the lattice orientations and the presence of unwanted adsorbates between the stacked layers. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the materials electronic properties and crystal structure, and explore applications for near-infrared photodetectors (exploiting its narrow bandgap) and for p-n junctions based on the stacking of MoS2 (n-doped) and franckeite (p-doped)
We report on Andreev reflections at clean NbSe2-bilayer graphene junctions. The high transparency of the junction, which manifests as a large conductance enhancement of up to 1.8, enables us to see clear evidence of a proximity-induced superconductin g gap in bilayer graphene and two Andreev reflections through a vertical NbSe2-graphene and a lateral graphene-graphene junction respectively. Quantum transport simulations capture the complexity of the experimental data and illuminate the impact of various microscopic parameters on the transmission of the junction. Our work establishes the practice and understanding of an all-van-der-Waals, high-performance superconducting junction. The realization of a highly transparent proximized graphene-graphene junction opens up possibilities to engineer emergent quantum phenomena.
96 - F.Cadiz , C. Robert , E. Courtade 2018
We have combined spatially-resolved steady-state micro-photoluminescence ($mu$PL) with time-resolved photoluminescence (TRPL) to investigate the exciton diffusion in a WSe$_2$ monolayer encapsulated with hexagonal boron nitride (hBN). At 300 K, we ex tract an exciton diffusion length $L_X= 0.36pm 0.02 ; mu$m and an exciton diffusion coefficient of $D_X=14.5 pm 2;mbox{cm}^2$/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species : bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of $L_{X^D}=1.5pm 0.02 ;mu$m.
We present vibrational properties of Franckeite, which is a naturally occurring van der Waals heterostructure consisting of two different semiconducting layers. Franckeite is a complex layered crystal composed of alternating SnS$_2$ like pseudohexago nal and PbS-like pseudotetragonal layers stacked on top of each other, providing a unique platform to study vibrational properties and thermal transport across layers with mass density and phonon mismatches. By using micro-Raman spectroscopy and first-principles Raman simulations, we found that the PbS-like pseudotetragonal structure is mostly composed of Pb$_3$SbS$_4$. We also discovered several low-frequency Raman modes that originate from the intralayer vibrations of the pseudotetragonal layer. Using density functional theory, we determined all vibrational patterns of Franckeite, whose signatures are observed in the Raman spectrum. By studying temperature dependent Raman spectroscopy (300 K - 500 K), we have found different temperature coefficients for both pseudotetragonal and pseudohexagonal layers. We believe that our study will help understand the vibration modes of its complex heterostructure and the thermal properties at the nanoscale.
Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source wit h a large SOT efficiency (${xi}$) and electrical conductivity (${sigma}$), and an efficient spin injection across a transparent interface. Herein, we use single crystals of the van der Waals (vdW) topological semimetal WTe$_2$ and vdW ferromagnet Fe$_3$GeTe$_2$ to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ${xi}{approx}4.6$ and ${sigma}{approx}2.25{times}10^5 {Omega}^{-1} m^{-1}$ for WTe$_2$. Moreover, we obtain the significantly reduced switching current density of $3.90{times}10^6 A/cm^2$ at 150 K, which is an order of magnitude smaller than those of conventional heavy-metal/ ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا