ﻻ يوجد ملخص باللغة العربية
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field theories in the hamiltonian formalism). The properties of the Hamilton-Jacobi (HJ) action are described in details and several examples are explicitly computed (including nonabelian Chern-Simons theory, where the HJ action turns out to be the gauged Wess-Zumino-Witten action). Perturbative quantization, limited in this note to finite-dimensional targets, is performed in the framework of the Batalin-Vilkovisky (BV) formalism in the bulk and of the Batalin-Fradkin-Vilkovisky (BFV) formalism at the endpoints. As a sanity check of the method, it is proved that the semiclassical contribution of the physical part of the evolution operator is still given by the HJ action. Several examples are computed explicitly. In particular, it is shown that the toy model for nonabelian Chern-Simons theory and the toy model for 7D Chern-Simons theory with nonlinear Hitchin polarization do not have quantum corrections in the physical part (the extension of these results to the actual cases is discussed in the companion paper [arXiv:2012.13983]). Background material for both the classical part (symplectic geometry, generalized generating functions, HJ actions, and the extension of these concepts to infinite-dimensional manifolds) and the quantum part (BV-BFV formalism) is provided.
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass
We introduce two remarkable identities written in terms of single commutators and anticommutators for any three elements of arbitrary associative algebra. One is a consequence of other (fundamental identity). From the fundamental identity, we derive
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply th
We review the Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation and discuss gauge freedom and display constraints for gauge theories in a general context. We introduce the Dirac bracket and show that it provides a co
We consider the variation of the surface spanned by closed strings in a spacetime manifold. Using the Nambu-Goto string action, we induce the geodesic surface equation, the geodesic surface deviation equation which yields a Jacobi field, and we defin