ﻻ يوجد ملخص باللغة العربية
We review the Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation and discuss gauge freedom and display constraints for gauge theories in a general context. We introduce the Dirac bracket and show that it provides a consistent method to remove any gauge freedom present. We discuss stability in evolution of gauge theories and show that fixing all gauge freedom is sufficient to ensure well-posedness for a large class of gauge theories. Electrodynamics provides examples of the methods outlined for general gauge theories. Future work will apply the formalism, and results derived here, to General Relativity.
We show that the contact dynamics obtained from the Herglotz variational principle can be described as a constrained nonholonomic or vakonomic ordinary Lagrangian system depending on a dissipative variable with an adequate choice of one constraint. A
We implement the metric-independent Fock-Schwinger gauge in the abelian quantum Chern-Simons field theory defined in ${mathbb R}^3$. The expressions of the various components of the propagator are determined. Although the gauge field propagator diffe
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field the
We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results
We consider a construction of observables by using methods of supersymmetric field theories. In particular, we give an extension of AKSZ-type observables using the Batalin-Vilkovisky structure of AKSZ theories to a formal global version with methods