ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimising Delay and Energy in Online Dynamic Fog Systems

253   0   0.0 ( 0 )
 نشر من قبل Faten Alenizi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing use of Internet of Things (IoT) devices generates a greater demand for data transfers and puts increased pressure on networks. Additionally, connectivity to cloud services can be costly and inefficient. Fog computing provides resources in proximity to user devices to overcome these drawbacks. However, optimisation of quality of service (QoS) in IoT applications and the management of fog resources are becoming challenging problems. This paper describes a dynamic online offloading scheme in vehicular traffic applications that require execution of delay-sensitive tasks. This paper proposes a combination of two algorithms: dynamic task scheduling (DTS) and dynamic energy control (DEC) that aim to minimise overall delay, enhance throughput of user tasks and minimise energy consumption at the fog layer while maximising the use of resource-constrained fog nodes. Compared to other schemes, our experimental results show that these algorithms can reduce the delay by up to 80.79% and reduce energy consumption by up to 66.39% in fog nodes. Additionally, this approach enhances task execution throughput by 40.88%.



قيم البحث

اقرأ أيضاً

Recently, fog computing has been introduced as a modern distributed paradigm and complement to cloud computing to provide services. Fog system extends storing and computing to the edge of the network, which can solve the problem about service computi ng of the delay-sensitive applications remarkably besides enabling the location awareness and mobility support. Load balancing is an important aspect of fog networks that avoids a situation with some under-loaded or overloaded fog nodes. Quality of Service (QoS) parameters such as resource utilization, throughput, cost, response time, performance, and energy consumption can be improved with load balancing. In recent years, some researches in load balancing techniques in fog networks have been carried out, but there is no systematic review to consolidate these studies. This article reviews the load-balancing mechanisms systematically in fog computing in four classifications, including approximate, exact, fundamental, and hybrid methods (published between 2013 and August 2020). Also, this article investigates load balancing metrics with all advantages and disadvantages related to chosen load balancing mechanisms in fog networks. The evaluation techniques and tools applied for each reviewed study are explored as well. Additionally, the essential open challenges and future trends of these mechanisms are discussed.
These days, the development of smart cities, specifically in location-aware, latency-sensitive, and security-crucial applications (such as emergency fire events, patient health monitoring, or real-time manufacturing) heavily depends on a more advance computing paradigms that can address these requirements. In this regard, fog computing, a robust cloud computing complement, plays a preponderant role by virtue of locating closer to the end-devices. Nonetheless, utilized approaches in smart cities are frequently cloud-based, which causes not only the security and time-sensitive services to suffer but also its flexibility and reliability to be restricted. So as to obviate the limitations of cloud and other related computing paradigms such as edge computing, this paper proposes a systematic literature review (SLR) for the state-of-the-art fog-based approaches in smart cities. Furthermore, according to the content of the reviewed researches, a taxonomy is proposed, falls into three classes, including service-based, resource-based, and application-based. This SLR also investigates the evaluation factors, used tools, evaluation methods, merits, and demerits of each class. Types of proposed algorithms in each class are mentioned as well. Above all else, by taking various perspectives into account, comprehensive and distinctive open issues and challenges are provided via classifying future trends and issues into practical sub-classes.
70 - Yong Xiao , Marwan Krunz 2021
Fog computing has been advocated as an enabling technology for computationally intensive services in smart connected vehicles. Most existing works focus on analyzing the queueing and workload processing latencies associated with fog computing, ignori ng the fact that wireless access latency can sometimes dominate the overall latency. This motivates the work in this paper, where we report on a five-month measurement study of the wireless access latency between connected vehicles and a fog/cloud computing system supported by commercially available LTE networks. We propose AdaptiveFog, a novel framework for autonomous and dynamic switching between different LTE networks that implement a fog/cloud infrastructure. AdaptiveFogs main objective is to maximize the service confidence level, defined as the probability that the latency of a given service type is below some threshold. To quantify the performance gap between different LTE networks, we introduce a novel statistical distance metric, called weighted Kantorovich-Rubinstein (K-R) distance. Two scenarios based on finite- and infinite-horizon optimization of short-term and long-term confidence are investigated. For each scenario, a simple threshold policy based on weighted K-R distance is proposed and proved to maximize the latency confidence for smart vehicles. Extensive analysis and simulations are performed based on our latency measurements. Our results show that AdaptiveFog achieves around 30% to 50% improvement in the confidence levels of fog and cloud latencies, respectively.
Blockchain has revolutionized how transactions are conducted by ensuring secure and auditable peer-to-peer coordination. This is due to both the development of decentralization, and the promotion of trust among peers. Blockchain and fog computing are currently being evaluated as potential support for software and a wide spectrum of applications, ranging from banking practices and digital transactions to cyber-physical systems. These systems are designed to work in highly complex, sometimes even adversarial, environments, and to synchronize heterogeneous machines and manufacturing facilities in cyber computational space, and address critical challenges such as computational complexity, security, trust, and data management. Coupling blockchain with fog computing technologies has the potential to identify and overcome these issues. Thus, this paper presents the knowledge of blockchain and fog computing required to improve cyber-physical systems in terms of quality-of-service, data storage, computing and security.
The Load-Balanced Router architecture has received a lot of attention because it does not require centralized scheduling at the internal switch fabrics. In this paper we reexamine the architecture, motivated by its potential to turn off multiple comp onents and thereby conserve energy in the presence of low traffic. We perform a detailed analysis of the queue and delay performance of a Load-Balanced Router under a simple random routing algorithm. We calculate probabilistic bounds for queue size and delay, and show that the probabilities drop exponentially with increasing queue size or delay. We also demonstrate a tradeoff in energy consumption against the queue and delay performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا