ﻻ يوجد ملخص باللغة العربية
Strong turbulence conditions create amplitude aberrations through the effects of near-field diffraction. When integrated over long optical path lengths, amplitude aberrations (seen as scintillation) can nullify local areas in the recorded image of a coherent beam, complicating the wavefront reconstruction process. To estimate phase aberrations experienced by a telescope beam control system in the presence of strong turbulence, the wavefront sensor (WFS) of an adaptive optics must be robust to scintillation. We have designed and built a WFS, which we refer to as a Fresnel sensor, that uses near-field diffraction to measure phase errors under moderate to strong turbulent conditions. Systematic studies of its sensitivity were performed with laboratory experiments using a point source beacon. The results were then compared to a Shack-Hartmann WFS (SHWFS). When the SHWFS experiences irradiance fade in the presence of moderate turbulence, the Fresnel WFS continues to routinely extract phase information. For a scintillation index of $S = 0.55$, we show that the Fresnel WFS offers a factor of $9times$ gain in sensitivity over the SHWFS. We find that the Fresnel WFS is capable of operating with extremely low light levels, corresponding to a signal-to-noise ratio of only $mbox{SNR}approx 2-3$ per pixel. Such a device is well-suited for coherent beam propagation, laser communications, remote sensing, and applications involving long optical path-lengths, site-lines along the horizon, and faint signals.
The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncert
We study the problem of learning communities in the presence of modeling errors and give robust recovery algorithms for the Stochastic Block Model (SBM). This model, which is also known as the Planted Partition Model, is widely used for community det
The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to
We investigate the influence of laser phase noise heating on resolved sideband cooling in the context of cooling the center-of-mass motion of a levitated nanoparticle in a high-finesse cavity. Although phase noise heating is not a fundamental physica
Kernel-phase is a data analysis method based on a generalization of the notion of closure-phase invented in the context of interferometry, but that applies to well corrected diffraction dominated images produced by an arbitrary aperture. The linear m