ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistance and Kondo effect in the nodal-line semimetal VAs$_2$

131   0   0.0 ( 0 )
 نشر من قبل Minghu Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity $rho_{xx}(T,H)$, Hall resistivity $rho_{xy}(T,H)$, and magnetic susceptibility as a function of temperature and various magnetic fields for VAs$_2$ with a monoclinic crystal structure. The band structure calculations show that VAs$_2$ is a nodal-line semimetal when spin-orbit coupling is ignored. The emergence of a minimum at around 11 K in $rho_{xx}(T)$ measured at $H$ = 0 demonstrates that an additional magnetic impurity (V$^{4+}$, $S$ = 1/2) occurs in VAs$_2$ single crystals, evidenced by both the fitting of $rho_{xx}(T)$ data and the susceptibility measurements. It was found that a large positive magnetoresistance (MR) reaching 649% at 10 K and 9 T, its nearly quadratic field dependence, and a field-induced up-turn behavior of $rho_{xx}(T)$ emerge also in VAs$_2$, although MR is not so large due to the existence of additional scattering compared with other topological nontrival/trival semimetals. The observed properties are attributed to a perfect charge-carrier compensation, which is evidenced by both calculations relying on the Fermi surface and the Hall resistivity measurements. These results indicate that the compounds containing V ($3d^3 4s^2$) element as a platform for studying the influence of magnetic impurities to the topological properties.



قيم البحث

اقرأ أيضاً

143 - Yongkang Luo , H. Li , Y. M. Dai 2015
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50~K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50~K, which might be the direct driving force of the electron-hole ``compensation and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the $a$-$b$ plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold $a$-$b$ plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmanns semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of $2.6times10^{-14}$~s and the mean free path of $15$~nm at 1.8~K in our samples of ZrSiS.
Strong electron correlations have long been recognized as driving the emergence of novel phases of matter. A well recognized example is high-temperature superconductivity which cannot be understood in terms of the standard weak-coupling theory. The e xotic properties that accompany the formation of the two-channel Kondo effect including the emergence of an unconventional metallic state in the low-energy limit also originate from strong electron interactions. Despite its paradigmatic role for the formation of non-standard metal behavior, the stringent conditions required for its emergence have made the observation of the nonmagnetic, orbital two-channel Kondo effect in real quantum materials difficult, if not impossible. We report the observation of orbital one- and two-channel Kondo physics in the symmetry-enforced Dirac nodal line metals IrO2 and RuO2 nanowires and show that the symmetries that enforce the existence of Dirac nodal lines also promote the formation of nonmagnetic Kondo correlations. Rutile oxide nanostructures thus form a versatile quantum matter platform to engineer and explore intrinsic, interacting topological states of matter.
Electron correlation effects are studied in ZrSiS using a combination of first-principles and model approaches. We show that basic electronic properties of ZrSiS can be described within a two-dimensional lattice model of two nested square lattices. H igh degree of electron-hole symmetry characteristic for ZrSiS is one of the key features of this model. Having determined model parameters from first-principles calculations, we then explicitly take electron-electron interactions into account and show that at moderately low temperatures ZrSiS exhibits excitonic instability, leading to the formation of a pseudogap in the electronic spectrum. The results can be understood in terms of Coulomb-interaction-assisted pairing of electrons and holes reminiscent to that of an excitonic insulator. Our finding allows us to provide a physical interpretation to the unusual mass enhancement of charge carriers in ZrSiS recently observed experimentally.
We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity rhoxx(T,H), Hall resistivity rhoxy(T,H) and quantum oscillations of the magnetization as a function of temperature at va rious magnetic fields for MoO2 with monoclinic crystal structure. The band structure calculations show that MoO2 is a nodal-line semimetal when spin-orbit coupling is ignored. It was found that a large magnetoresistance reaching 5.03x10^4% at 2 K and 9 T, its nearly quadratic field dependence and a field-induced up-turn behavior of rhoxx(T), the characteristics common for many topologically non-trivial as well as trivial semimetals, emerge also in MoO2. The observed properties are attributed to a perfect charge-carrier compensation, evidenced by both calculations relying on the Fermi surface topology and the Hall resistivity measurements. Both the observation of negative magnetoresistance for magnetic field along the current direction and the non-zero Berry phase in de Haas-van Alphen measurements indicate that pairs of Weyl points appear in MoO2, which may be due to the crystal symmetry breaking. These results highlight MoO2 as a new platform materials for studying the topological properties of oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا