ترغب بنشر مسار تعليمي؟ اضغط هنا

Degradation of Nonylphenol Ethoxylate-10 (NPE-10) by Mediated Electrochemical Oxidation (MEO) Technology

73   0   0.0 ( 0 )
 نشر من قبل Henry Setiyanto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonylphenol ethoxylate (NPE 10) is a non ionic surfactant which is synthesized from alkylphenol ethoxylate. The accumulation of NPE-10 in wastewater will endanger the ecosystem as well as human being. At present, by an advancement of technology NPE 10 can be degraded indirectly by using an electrochemically treatment. Thus, this study aimed to evaluate the potential electrodegradation of NPE 10 by mediated electrochemical oxidation (MEO) using Ce(IV) ionic mediator. In addition, the influence of Ag(I) ionic catalyst in the performance of MEO for degradation of NPE 10 was also observed. The potency of MEO technology in degradation NPE 10 was evaluated by voltammetry technique and confirmed by titrimetry and LC-MS analyses. The results showed that in the absence of Ag(I) ionic catalyst, the degradation of NPE 10 by MEO was 85.93 %. Furthermore, when the Ag(I) ionic catalyst was applied, the performance of MEO in degradation of NPE 10 was improved to 95.12 %. The back titration using Ba(OH)2 confirmed the formation of CO2 by 46.79 %. Whereas the redox titration shows the total of degradation organic compounds by 42.50 %, which was emphasized by formation of two new peaks in LC-MS chromatogram. In summary, our results confirm the potential of MEO technology for NPE-10 degradation.



قيم البحث

اقرأ أيضاً

Polyimides, due to their superior mechanical behavior at high temperatures, are used in a variety of applications that include aerospace, automobile and electronic packaging industries, as matrices for composites, as adhesives etc. In this paper, we extend our previous model in [S. Karra, K. R. Rajagopal, Modeling the non-linear viscoelastic response of high temperature polyimides, Mechanics of Materials, In press, doi:10.1016/j.mechmat.2010.09.006], to include oxidative degradation of these high temperature polyimides. Appropriate forms for the Helmholtz potential and the rate of dissipation are chosen to describe the degradation. The results for a specific boundary value problem, using our model compares well with the experimental creep data for PMR-15 resin that is aged in air.
Phenylenediamine (PDA) was chosen as a coordinating, reducing, and capping agent to effectively direct growth and protect against oxidation of Cu nanowires (Cu NWs) in an aqueous solution. PDA was found to reduce Cu (II) to Cu (I) at room temperature , and stabilize the resulting Cu (I) by forming a coordination complex. The presence of a stable Cu (I) complex is the key step in the synthesis of Cu NWs under mild conditions. Different PDA isomers lead to different growth paths of forming Cu NWs. Both pPDA and mPDA-synthesized Cu NWs were covered with a thin layer of polyphenylenediamine and show excellent anti-oxidation properties, even in the presence of water. The usefulness of the present and electrochemical active Cu NWs for a variety of nanotechnology applications is discussed.
Bi2Se3 is a topological insulator with metallic surface states residing in a large bulk bandgap. It is believed that Bi2Se3 gets additional n-type doping after exposure to atmosphere, thereby reducing the relative contribution of surface states in to tal conductivity. In this letter, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological surface states. Appropriate surface passivation or encapsulation may be required to probe topological surface states of Bi2Se3 by transport measurements.
Engineering magnetic orders in topological insulators is critical to the realization of topological quantum phenomena such as the axion insulator state and the quantum anomalous Hall insulator state. Here we establish MnBi$_6$Te$_{10}$ as a tunable t opological material platform where ferromagnetism and antiferromagnetism can be selectively obtained. We conduct a comprehensive measurement of ferromagnetic MnBi$_6$Te$_{10}$ bulk crystals via laser-based angle-resolved photoemission spectroscopy, and compare the results with those from their antiferromagnetic counterparts. For ferromagnetic MnBi$_6$Te$_{10}$, we observe a magnetically driven broken-symmetry gap of 15 meV at the topological surface state on the MnBi$_2$Te$_4$ termination, which disappears when the temperature is raised above the Curie temperature. In contrast, antiferromagnetic MnBi$_6$Te$_{10}$ exhibits gapless topological surface states on all terminations. We consider disorder in the form of Mn migration from MnBi$_2$Te$_4$ layers to the neighboring Bi$_2$Te$_3$ layers as a possible driving force for the delicate ferromagnetism. Our spectroscopic study establishes MnBi$_6$Te$_{10}$ as the first bulk MnBi$_{2n}$Te$_{3n+1}$ compound to host tunable topological orders due to its highly variable electronic and magnetic structures.
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. By using low-temperature scanning tunneling microscopy, it is found that the adsorption configurations an d amounts of oxygen adatoms on the silicene surface are critical for band-gap engineering, which is dominated by different buckled structures in R13xR13, 4x4, and 2R3x2R3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on R13xR13, 4x4, and 2R3x2R3 structures under oxidation, which is verified by in-situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا