ﻻ يوجد ملخص باللغة العربية
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. By using low-temperature scanning tunneling microscopy, it is found that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band-gap engineering, which is dominated by different buckled structures in R13xR13, 4x4, and 2R3x2R3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on R13xR13, 4x4, and 2R3x2R3 structures under oxidation, which is verified by in-situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.
We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag(110) surface using Scanning Tunneling Microscopy and High-Resolution Photoemission Spectroscopy. The results show that silicene nanoribbons present a strong resistance
We fabricated ferroelectric Bi4Ti3O12 (BiT) single crystalline thin films site-specifically substituted with LaTMO3 (TM = Al, Ti, V, Cr, Mn, Co, and Ni) on SrTiO3 substrates by pulsed laser epitaxy. When transition metals are incorporated into a cert
Here we report the successful growth of MoSe2 on single layer hexagonal boron nitride (hBN) on Ru(0001) substrate by using molecular beam epitaxy. We investigated the electronic structures of MoSe2 using scanning tunneling microscopy and spectroscopy
We study the geometric and electronic structures of silicene monolayer using density functional theory based calculations. The electronic structures of silicene show that it is a semi-metal and the charge carriers in silicene behave like massless Dir
Transition metal perovskite chalcogenides (TMPC) are a new class of semiconductor materials with broad tunability of physical properties due to their chemical and structural flexibility. Theoretical calculations show that band gaps of TMPCs are tunab